Herbig Ae/Be stars with TGAS parallaxes in the HR diagram

Miguel Vioque, René D. Oudmaijer and Deborah Baines

Herbig Ae/Be stars

Fairlamb J.R. thesis. 2015

Herbig Ae/Be stars

Fairlamb J.R. thesis. 2015

Herbig Ae/Be stars

Around 254 catalogued Herbig Ae/Be stars at the moment. Some rather dubious.

Fairlamb J.R. thesis. 2015

Gaia

Gaia Collaboration. 2016, A\&A, 595, A2

Gaia

Gaia Collaboration. 2016, A\&A, 595, A2

HR diagram

- 254 known Herbig Ae/Be stars $\Longrightarrow 108$ in TGAS.
- $T_{e f f}, \log (g)$ and metallicity were taken from the literature.
- We used multi epoch and simultaneous photometry when possible.
- Photometry was dereddened using a $R_{V}=3.1$.
- All sources were crossmatched with 2MASS and WISE.

Fairlamb J.R. et al. 2015, MNRAS, 453, 976
Montesinos B. et al. 2009, A\&A, 495, 901
Hernández J. et al. 2004, AJ, 127, 1682
Mendigutía l. et al. 2012, A\&A, 543, A59
Chen P.S. et al. 2016, New A, 44, 1

HR diagram

- 254 known Herbig Ae/Be stars $\Longrightarrow 108$ in TGAS.

HR diagram

Luminosities from spectra: Fairlamb et al. (2015) \& Montesinos et al. (2009)

HR diagram

Isochrones: Bressan A. et al. 2012, MNRAS, 427, 127

HR diagram

Similar procedure for 73240 TGAS sources

McDonald I. et al. 2012, MNRAS, 427, 343

Identify Herbig Ae/Be stars

- Herbig G.H. 1960, ApJS, 4, 337:
- Spectral type A or earlier, with emission lines.
- The star lies in an obscured region.
- The star illuminates fairly bright luminosity in its immediate vicinity.

Infrared Excess
 Variability
 H α Emission

Identify Herbig Ae/Be stars

- Herbig G.H. 1960, ApJS, 4, 337:
- Spectral type A or earlier, with emission lines.
- The star lies in an obscured region.
- The star illuminates fairly bright luminosity in its immediate vicinity.

Infrared Excess
 Variability
 H α Emission

Infrared Excess

Infrared Excess

$I R$ excess $W I S E=\frac{\text { Excess in } W 1+\text { Excess in } W 2+\text { Excess in } W 3+\text { Excess in } W 4}{4}$

McDonald I. et al. 2012, MNRAS, 427, 343

Infrared Excess

$I R$ excess $W I S E=\frac{\text { Excess in } W 1+\text { Excess in } W 2+\text { Excess in } W 3+\text { Excess in } W 4}{4}$

McDonald I. et al. 2012, MNRAS, 427, 343

Infrared Excess

Red dots: McDonald I. et al. 2012, MNRAS, 427, 343

Infrared Excess

Green dots: The PASTEL catalogue; Soubiran C. et al. 2016, A\&A, 591A, 118 Red dots: McDonald I. et al. 2012, MNRAS, 427, 343

Infrared Excess

Infrared Excess

Infrared Excess

What else looks like this?

- Herbig G.H. 1960, ApJS, 4, 337:
- Spectral type A or earlier, with emission lines.
- The stars lies in an obscured region.
- The stars illuminates fairly bright luminosity in its immediate vicinity.

Infrared Excess
 Variability
 $H \alpha$ Emission

What else looks like this?

- H

Be stars

- Spectral type A or earlier, with emission lines.
- The stars lie
- The stars illı vicinity.

Infrared Excess

Infrared Excess

Be stars: Jaschek M., Egret D. 1982, IAUS, 98, 261

Infrared Excess

Be stars: Jaschek M., Egret D. 1982, IAUS, 98, 261

Infrared Excess

Be stars: Jaschek M., Egret D. 1982, IAUS, 98, 261

Infrared Excess

IR excess in WISE bands vs. IR excess in 2MASS bands

Basic data :
 HD 114981 -- Be Star

Other object types:
ICRS coord. (ep=J2000) :

* (HD,CD,...), IR (IRAS,2MASS), Ae? (Ref), Be* (Ref), Em* (Hen), V* (V*), UV (TD1)
131440.68493 -38 3905.6581 (Optical) [4.043 .4390] A 2007A\&A...474..653V : $131440.685-383905.66[4.043 .4390$]

Gal coord. (ep=J2000) :
Proper motions mas/yr :
Parallaxes (mas):
Spectral type:
Fluxes (6) :

SIMBAD query around with radius 2) arcmin

Interactive AladinLite view

Be stars: Jaschek M., Egret D. 1982, IAUS, 98, 261

Infrared Excess

Infrared Excess

IR excess in WISE bands vs. IR excess in 2MASS bands

HD 259431 -- Herbig Ae/Be star

SIMBAD query around with radius? \qquad arcmin

Other object types:
ICRS coord. ($e p=J 2000$) :
FK5 coord. (ep=J2000 eq=2000)
FK4 coord. ($e p=B 1950$ eq=1950)
Gal coord. ($e p=J 2000$) :
Proper motions mas/yr:
Radial velocity / Redshift / cz :
Parallaxes (mas):
Spectral type:
Fluxes (7) :

Or* (), * (HD,AG,...), Em* (EM*,HBC,...), *iC ([VGK85]), *iN (VDB), Ae* (Ref), V* (V*), IR (2MASS), UV (TD1)
$063305.19061+101919.9869$ (Optical) [9.957 .6690] A 2007A\&A...474..653V
$063305.191+101919.99$ [9.957 .6690]
: $063019.38+102138.3$ [57.0244 .620]
$201.6657+00.6686$ [9.957 .6690]
-2.37-2.72 [1.13 0.87 0] A 2007A\&A...474..653V
$\mathrm{V}(\mathrm{km} / \mathrm{s}) 19.00$ [4.1] / z(~) 0.000063 [0.000014] / cz 19.00 [4.10]
C 2006AstL...32..759G
5.78 [1.22] A 2007A\&A...474..653V

B6ep D 1982AJ.....87...98H
U 8.39 [~] C 2002yCat.2237....OD
B $8.95[\sim]$ C 2002yCat.2237.... OD
V 8.72 [~] C 2002yCat. 2237....OD
R 8.9 [~] E 2003yCat.2246....OC
J 7.454 [0.026] C 2003yCat.2246....OC
H 6.67 [0.03] C 2003ycat. 2246....OC

Infrared Excess

- 115 Herbig Ae • 951 Be stars • 96328 General sample 1
- 103 Herbig Be
- 17251 General sample 2

Infrared Excess

- 95/115 Herbig Ae • 6/951 Be stars • 10/96328 General sample 1 - 66/103 Herbig Be

Infrared Excess

- From an input catalogue of 114748 sources, imposing $W 1-W 4>3.5$ and $J-K_{S}>0.8$:
- 74\% of Herbig Ae/Be stars recovered.
- 83% of Herbig Ae stars.
- 64% of Herbig Be stars.
- 0.6% of Be stars recovered.
- 0.01% of general sources.

Infrared Excess

- 218 Herbig Ae/Be
- 1017635 input catalogue

Infrared Excess

- 161/218 Herbig Ae/Be - 337/1017635 input catalogue

Variability

- In general, Gaia Data Release 1 has no explicit variability information.
- In Gaia Data Release 1 sources were observed several tens to hundreds of times.
- It is possible to extract variability information from the repeated observations.

Variability indicator $=\sqrt{N_{o b s}} \sigma(F) / F$
$N_{\text {obs }}$ is the number of CCD crossings, F is the flux in the G band, $\sigma(F)$ is the flux error.

Deason A.J. et al. 2017. MNRAS, 467, 2636

Variability

Variability \& IR Excess

- 33 Herbig Ae
- 497 Be stars
- 22 Herbig Be
- 671478 TGAS sources

$3.4 M_{\odot}$ track

$3.4 M_{\odot}$ track

$\begin{gathered} \text { IR excess 2MASS }=1.60 \\ \text { IR excess WISE }=12.6 \end{gathered}$	IR excess 2MASS $=1.63$ IR excess WISE = 560	IR excess 2MASS $=6.78$ IR excess WISE $=509$
$\begin{gathered} \text { IR excess 2MASS }=4.78 \\ \text { IR excess WISE }=299 \end{gathered}$	$\begin{gathered} \text { IR excess 2MASS }=11.9 \\ \text { IR excess WISE }=824 \end{gathered}$	IR excess 2MASS = 1.14 IR excess WISE $=33.3$

Conclusions

- Infrared excesses have proved to be a very powerful tool for identifying Herbig Ae/Be stars.
- Variability is not a good tracer of Herbig Ae/Be stars, but it will be useful in combination with other parameters.
- Current analysis on the HR diagram do not allow us to draw any solid conclusion, except that infrared excesses are not very dependent of evolutionary status.
- It is necessary to keep adding dimensions to the selection criteria to be as much prepared as possible for Gaia DR2.

This project has received funding from the European Union's Horizon 2020 research and innovation programme under MSCA ITN-EID grant agreement No 676036.

More STARRY

The clustering properties of intermediate mass young stars
 Perez-Blanco A. et al.

Characterization cluster properties Herbig Ae/Be stars, by identifying the cluster environment around the target stars and determining the clusters' astrophysical parameters.

Figure 1 K band images of four Herbig stars. The upper section of the figure shows the Herbig stars surrounded by a large number of companions and the lower section of the figure the Herbig stars appear single and isolated. Figure taken from Testi et al. (1997).

Figure 2 Selection process of the stars in the cluster NGC6475.

