Clustering properties of Herbig Ae/Be stars — CEREAL

Alice Pérez Blanco

René Oudmaijer (University of Leeds), Ricardo Pérez-Martinez (ISDEFE - ESAC) and Deborah Baines (QUASAR - ESAC)

Outline

- * Background.
- * ClustER detEction ALgorithm (CEREAL).
- CEREAL vs Testi et al 1999.
- * Conclusions.

- Testi +99 analyzed
 the occurrence of
 young stellar clusters
 around Herbig Ae/
 Be stars from near infrared images.
- Spectral type rangeO9 to A7.

K band images of four Herbig stars.

ClustER detEction ALgorithm: CEREAL

Gaia Collaboration+2018; Lindengren+18a; Vioque+18

Semi-automatic code to make selection using the astrometric parameters.

ClustER detEction ALgorithm: CEREAL

Gaia Collaboration+2018; Lindengren+18a; Vioque+18

Semi-automatic code to make selection using the astrometric parameters.

ClustER detEction ALgorithm: CEREAL

Herbig 60; Thé+94; Che+16; Vioque+18

Following the criteria to identify a HAeBe star defined by *Herbig 1960*, we compiled the known Herbig Ae/Be star candidates.

270 stars form the sample, taken from *Chen* + 16 and *Vioque* + 18

Monoceros Constellation

Located	NGC 2264	PMRA	$-1.55 \pm 0.22 \text{mas/yr}$	SPT	B7	
Parallax	$1.14 \pm 0.12 \text{ mas}$	PMDEC	$-3.49 \pm 0.21 \text{ mas/yr}$		12.74 mag	

Monoceros Constellation

Located	NGC 2264	PMRA	$-1.55 \pm 0.22 \text{mas/yr}$	SPT	B7	
Parallax	$1.14 \pm 0.12 \text{ mas}$	PMDEC	$-3.49 \pm 0.21 \text{ mas/yr}$		12.74 mag	

Monoceros Constellation

Located

NGC 2264

PMRA

 $-1.55 \pm 0.22 \, \text{mas/yr}$

SPT

B7

Parallax

 1.14 ± 0.12 mas

PMDEC -3.49 ± 0.21 mas/yr

12.74 mag

Monoceros Constellation

Located

NGC 2264

PMRA

 $-1.55 \pm 0.22 \, \text{mas/yr}$

SPT

B7

Parallax

 1.14 ± 0.12 mas

PMDEC -3.49 ± 0.21 mas/yr

12.74 mag

Monoceros Constellation

Located

NGC 2264

PMRA

 $-1.55 \pm 0.22 \, \text{mas/yr}$

SPT

B7

Parallax

 1.14 ± 0.12 mas

PMDEC -3.49 ± 0.21 mas/yr

12.74 mag

CEREAL vs TESTI

- * IC ≥ 40, the Herbig stars are definitely associated with rich clusters;
- 10 ≤ IC ≥ 40 a small cluster may be present;
- IC ≤10 only small
 aggregates or
 background stars in the
 field are found.

Where do we not agree?

Testi + 99

PARALLAX

 $2.77 \pm 0.04 \text{ mas}$

PMRA

 $8.33 \pm 0.07 \, \text{mas/yr}$

PMDEC

 $-1.56 \pm 0.08 \text{ mas/yr}$

B2

7.15 mag

1.9

SPT

G

IC

yr yr

Conclusion...

- CEREAL has classified ~ 70 stars to be in a cluster.
- * As preliminary result: B stars are more likely to be in clusters than A stars. (Testi+99)
- Source of contamination: bright source, dust, the field of view...

Conclusion... Future work

- CEREAL has classified ~ 70 stars to be in a cluster.
- * As preliminary result: B stars are more likely to be in clusters than A stars. (Testi+99)
- Source of contamination: bright source, dust, the field of view...
- Clustering properties for those HAeBe stars.
- * New HAeBe stars (Miguel Vioque talk).
- * Clustering algorithms comparison (Cánovas+19).

Conclusion... Future work

- CEREAL has classified ~ 70 stars to be in a cluster.
- * As preliminary result: B stars are more likely to be in clusters than A stars. (Testi+99)
- Source of contamination: bright source, dust, the field of view...
- Clustering properties for those HAeBe stars.
- * New HAeBe stars (Miguel Vioque talk).
- * Clustering algorithms comparison (Cánovas+19).

