Gaia DR2 study of Herbig Ae/Be stars

M. Vioque ${ }^{1,2 \star}$, R. D. Oudmaijer ${ }^{1}$, D. Baines ${ }^{3}$, I. Mendigutía ${ }^{4}$, and R. Pérez-Martínez ${ }^{2}$
${ }^{1}$ School of Physics and Astronomy, University of Leeds, Leeds LS2 9JT, UK.
${ }^{2}$ Ingeniería de Sistemas para la Defensa de España (Isdefe), XMM/Newton Science Operations Centre, ESA-ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain.
${ }^{3}$ Quasar Science Resources for ESA-ESAC, ESAC Science Data Center, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain.
${ }^{4}$ Centro de Astrobiología (CSIC-INTA), Departamento de Astrofísica, ESA-ESAC Campus, PO Box 78, 28691 Villanueva de la Cañada, Madrid, Spain.

Accepted for publication in Astronomy \& Astrophysics.

Abstract

Aims. We use Gaia Data Release 2 (DR2) to place 252 Herbig Ae/Be stars in the HR diagram and investigate their characteristics and properties. Methods. For all known Herbig Ae/Be stars with parallaxes in Gaia DR2, we collected their atmospheric parameters and photometric and extinction values from the literature. To these data we added near- and mid-infrared photometry, collected $\mathrm{H} \alpha$ emission line properties such as equivalent widths and line profiles, and their binarity status. In addition, we developed a photometric variability indicator from Gaia's DR2 information. Results. We provide masses, ages, luminosities, distances, photometric variabilities and infrared excesses homogeneously derived for the most complete sample of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars to date. We find that high mass stars have a much smaller infrared excess and have much lower optical variabilities compared to lower mass stars, with the break at around $7 \mathrm{M}_{\odot} . \mathrm{H} \alpha$ emission is generally correlated with infrared excess, with the correlation being stronger for infrared emission at wavelengths tracing the hot dust closest to the star. The variability indicator as developed by us shows that $\sim 25 \%$ of all Herbig Ae/Be stars are strongly variable. We observe that the strongly variable objects display doubly peaked $\mathrm{H} \alpha$ line profiles, indicating an edge-on disk. Conclusions. The fraction of strongly variable Herbig Ae stars is close to that found for A-type UX Ori stars. It had been suggested that this variability is in most cases due to asymmetric dusty disk structures seen edge-on. The observation here is in strong support of this hypothesis. Finally, the difference in dust properties occurs at $7 \mathrm{M}_{\odot}$, while various properties traced at UV/optical wavelengths differ at a lower mass, $3 \mathrm{M}_{\odot}$. The latter has been linked to different accretion mechanisms at work whereas the differing infrared properties and photometric variabilities are related to different or differently acting (dust-)disk dispersal mechanisms.

Key words. stars: Herbig Ae/Be - stars: Hertzsprung-Russell diagram - stars: formation - stars: pre-main sequence - stars: emissionline - infrared: stars

1. Introduction

Herbig $\mathrm{Ae} / \mathrm{Be}$ stars (HAeBes) are Pre-Main Sequence stars (PMS) of intermediate mass, spanning the range between low mass T-Tauri stars and the embedded Massive Young Stellar Objects (MYSOs). They are optically bright so they are much easier to observe and to study than MYSOs and it is expected that within the mass range of HAeBes a change in accretion mechanism from the magnetically controlled accretion acting for TTauri stars (see Bouvier et al. 2007) to an, as yet, unknown mechanism for high mass stars occurs. Indeed, there is evidence that the magnetically driven accretion model is valid for Herbig Ae stars but not for several Herbig Be stars (Fairlamb et al. 2015; Ababakr et al. 2017; Oudmaijer 2017; Grady et al. 2010; Schöller et al. 2016). Moreover, there are multiple evidences that Herbig Ae and T-Tauri stars behave more similarly than Herbig Be stars, and Herbig Ae and Herbig Be stars have different observational properties. Examples of this are the different outer gas dispersal rates (higher for Herbig Be stars, Fuente et al. 1998), the higher incidence of clustering scenarios for Herbig Be stars (Testi et al. 1999), and the evidences of Herbig Be stars hosting denser and larger inner gaseous disks (Ilee et al. 2014; Mon-

[^0]nier et al. 2005) that may suggest a different accretion scenario with the disk reaching directly into the star (Kraus 2015). Other spectro-photometric (Mendigutía et al. 2011b; Cauley \& JohnsKrull 2015 and Patel et al. 2017) and spectro-polarimetric studies (Vink et al. 2002) also point in the direction that the accretion physics change within the Herbig $\mathrm{Ae} / \mathrm{Be}$ stars mass range. In addition, Herbig Be stars are more likely to be found in binaries than Herbig Ae stars (Baines et al. 2006).

An important indicator of their PMS nature, together with emission lines, is the infrared (IR) excess that also traces the Herbig $\mathrm{Ae} / \mathrm{Be}$ forming environment. The IR excess profile have been classified into two groups differentiated by a flat or rising shape of the continuum (Meeus et al. 2001). This difference has a geometric origin depending on the presence of flaring outer disks and puffed-up inner disks (Dullemond \& Dominik 2004a, 2004b, 2005), and the presence of gaps in the disk (Maaskant et al. 2013; Honda et al. 2015). The IR excess of HAeBes is expected to be characteristic and different from the IR excess of other similar objects like for example, ordinary Be stars (Finkenzeller \& Mundt 1984).

Herbig $\mathrm{Ae} / \mathrm{Be}$ stars are known to present irregular photometric variations, with a typical timescale from days to weeks (Eiroa et al. 2002; Oudmaijer et al. 2001) and of the order of one mag-
nitude in the optical. This variability is typically understood as due to variable extinction, due to for example rotating circumstellar disks, or as an effect of rotation on cold photospheric spots and also pulsation due to the source crossing the instability strip in the HR diagram (Marconi \& Palla 1998). An extreme case of large non-periodic photometric and polarimetric variations is observed in UX Ori type stars (UXORs) with amplitudes up to 2-3 mag. Many of them are catalogued as HAeBes and their extreme variability is explained by eclipsing dust clouds in nearly edge-on sources and the scattering radiation in the circumstellar environment (see Grinin 2000 and references therein; Natta et al. 1997 and Natta \& Whitney 2000).

Infrared photometric variability, related to disk structure variations, is not always correlated with the optical variability (Eiroa et al. 2002) which implies that different mechanisms regarding both the disk structure and accretion underlie the final observed variability. Spectroscopic variability is also present in Herbig Ae/Be stars (Mendigutía et al. 2011a).

With the advent of the second data release of Gaia (DR2, Gaia Collaboration et al. 2016, Gaia Collaboration et al. 2018b), providing parallaxes to over 1.3 billion objects (Lindegren et al. 2018), including the majority of known Herbig Ae/Be stars, the time is right for a new study on the properties of the class. Gaia DR2 contains a five dimensional astrometric solution ($\alpha, \delta, \mu_{\alpha}$, μ_{δ} and parallax ($\left.\varpi\right)$) up to $G \lesssim 21$ (white G band, described in Evans et al. 2018). Almost all of the known Herbig Ae/Be stars have parallaxes in Gaia DR2, which allowed luminosities to be derived and 252 HAeBes to be placed in the HR diagram, a tenfold increase on earlier studies using Hipparcos data alone.

The paper is organized as follows: In Sect. 2, we describe the data acquisition of not only the parallaxes, but also optical and infrared photometry, effective temperatures, extinction values, $\mathrm{H} \alpha$ emission line information and binarity. In Sect. 3 we derive the stellar luminosities and place the objects in an HertzsprungRussell (HR) diagram, while we also present a method to derive a statistical assessment of the objects' variability in Gaia's database. In addition, we homogeneously derive masses and ages for all the sources, together with near- and mid-infrared excesses. In Sect. 4 we carry out an analysis of the data and present various correlations and interdependencies, which we discuss in the context of intermediate mass star formation in Sect. 5. We conclude in section Sect. 6.

2. Data acquisition

2.1. Construction of the sample

We have gathered the majority of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars known and proposed to date from different works (272, see Chen et al. 2016 for a compilation of most of them). Chen et al. (2016) based their sample mostly on the work of Zhang et al. (2006) which in turn is based on the work of The et al. (1994) and Vieira et al. (2003). In addition, we included a few HAeBes from Alecian et al. (2013); Baines et al. (2006); Carmona et al. 2010; Fairlamb et al. 2015; Hernández et al. (2005); Manoj et al. (2006) and Sartori et al. (2010) that are not present in the aforementioned papers.

Although Herbig $\mathrm{Ae} / \mathrm{Be}$ stars have long been considered, by definition, of type A or B, there should be some flexibility in this constraint as the physical boundary between Herbig Ae stars and intermediate mass T-Tauris is fairly unstudied. This is because spectral types of T-Tauri stars are typically K-M with some G-type objects while Herbig $\mathrm{Ae} / \mathrm{Be}$ stars are, quite unsurprisingly, limited to A and B spectral type. Hence, pre-Main Sequence stars of intermediate spectral types have often been
largely understudied. We therefore keep objects with F-type classification in Chen et al. (2016) in the sample. Similarly, no upper limit in mass was imposed, leaving the separation between Massive Young Stellar Objects (MYSOs) and HAeBes to the optical brightness of the sources ${ }^{1}$.

Then, we crossmatched the sources with Gaia DR2. Detections were considered to be matched with the catalogue when their coordinates agreed to within 0.5 arcsecond. If more than one match was found we took the closest one. If no match was found within 0.5 arcsecond, successive crossmatches with larger apertures were performed up to 2 arcsecond. In these latter cases an individual inspection of the crossmatch was applied. Finally, a comparison between the Johnson V band magnitudes and the Gaia filters was done for each source in order to discard possible incorrect matches. This provides us with parallaxes for 254 HAeBes.

As Lindegren et al. (2018) point out, not all Gaia DR2 parallaxes are of the same quality, and some values - despite their sometimes very small error bars - appear erroneous (e.g. Lindegren et al. 2018). We included the following constraint in astrometric quality following the indications in Appendix C of Lindegren et al. (2018) and what was applied in Gaia Collaboration et al. (2018). This constraint will remove from the sample objects with spurious parallaxes:

$$
\begin{equation*}
u<1.2 \times \max \left(1, e^{-0.2(G-19.5)}\right) \tag{1}
\end{equation*}
$$

where G is the Gaia G band and u is the unit weight error, defined as the square root of the ratio of the astrometric_chi2_al and (astrometric_n_good_obs_al - 5) columns (Lindegren et al. 2018, their Equation C.2). 228 of our sources satisfy this condition.

Some objects are found to be very close to this condition, PDS 144S, PV Cep and V892 Tau, and as we will show later, they would appear significantly below the Main Sequence in the HR-diagram. Given that the Lindegren condition is presented as a guideline rather than a rule by the Gaia astrometry team, we decided to treat these three objects as if they satisfy Eq. 1 as well.

We will refer to the set of astrometrically well behaved sources as the high quality sample and to those that do not satisfy Eq. 1 as the low quality sample. We will not be able to place 2 sources in the HR diagram because lacking of appropriate parameters (Sect. 2.2). In addition, we will move 5 more sources to the low quality sample in Sect. 3.1 because of different reasons. Summarizing, there are 218 objects ($228-3-2-5$) in the final high quality sample and 34 in the low quality one. Information about the objects in different samples is presented in separated tables at the end of the paper. The high quality sample will be the one taken into account in further considerations unless otherwise specified.

Distances are not obtained by straightforwardly inverting the parallax. The conversion of one parameter to the other one is not strictly trivial because of the non-linearity of the inverse function (see for example Bailer-Jones 2015). In the case of Gaia DR2, Bailer-Jones et al. (2018) proposed distance values using a weak distance prior that follows a galactic model. Their distances begin to differ from the distances obtained through simple inversion for sources with large errors, $\sigma_{\varpi} / \varpi \gtrsim 0.5$. Hence,
${ }^{1}$ The MYSOs are typically infrared-bright and optically faint (Lumsden et al. 2013). However, a number of optically visible objects are known to have passed all selection criteria such as the early type objects PDS 27 and PDS 37 that are also classified as Herbig Be stars (Ababakr et al. 2015).
in our initial (high and low quality) sample only a small subset of 12 Herbig $\mathrm{Ae} / \mathrm{Be}$ stars will suffer substantially from this effect. Following the indications in Luri et al. (2018) on how to treat the Gaia parallaxes we decided to apply a simpler exponentially decreasing prior to estimate distances. For completeness, we should note that the parallaxes provided by Gaia DR2 have a regional, not gaussian systematic error as large as 0.1 mas and a global zero point error of about -0.029 mas that are not included in the gaussian random errors provided in the Gaia archive (see Arenou et al. 2018 and Lindegren et al. 2018). Hence, the uncertainty in the parallaxes is slightly underestimated. The final errors in the high quality sample range from 0.016 to 0.37 mas .

Herbig $\mathrm{Ae} / \mathrm{Be}$ stars have been historically confused with classical Be stars, with which they share many characteristics (Rivinius et al. 2013; Klement et al. 2017; Grundstrom \& Gies 2006). Indeed, the nature of some of the objects in our sample is still under debate. An interesting example in this respect is HD 76534, a B2Ve object that appears in listings of Be stars (eg. Oudmaijer \& Drew 1997) and Herbig Be stars alike (Fairlamb et al. 2015). The latest dedicated study puts the object in the Herbig Be category (Patel et al. 2017). To assess the effect of ambiguous classifications in our study we will also, next to the full sample, consider the subset of Herbig Ae/Be stars in Table 1 of The et al. (1994). This catalogue contains all historically known, and best studied, Herbig Ae/Be stars. 98/254 of our initial sources with parallaxes are present in this table (their best candidates).

2.2. Atmospheric parameters, photometry and extinction values

We obtained atmospheric parameters and photometric and extinction values for all the sources from the literature. These were mainly Alecian et al. 2013; Carmona et al. 2010; Chen et al. 2016; Fairlamb et al. 2015; Hernández et al. 2004; Hernández et al. 2005; Manoj et al. 2006; Montesinos et al. 2009; Mendigutía et al. 2012; Sartori et al. 2010; Vieira et al. 2003 and the APASS Data Release 9. Whenever the effective temperature ($\mathrm{T}_{\text {eff }}$) was not available it was derived from the spectral type with the effective temperature calibration tables of Gray \& Corbally (2009). A 1 subspectral type uncertainty was assigned in all cases. When not listed in the literature, A_{V} values were derived from the observed photometry and using the intrinsic colours of Pecaut \& Mamajek (2013). An $R_{V}=3.1$ was used in all cases in which A_{V} was derived although other studies like Hernández et al. (2004) or Manoj et al. (2006) have suggested that a larger value of for example $R_{V}=5$ could be more appropriate for HAeBes where local extinction dominates the total extinction. This is a topic for future investigations using Diffuse Interstellar Bands (as done by for example Oudmaijer et al. 1997). The relevant data of each source is presented in Table 2 and Table 5 for the high quality and low quality samples respectively.

HAeBes usually show photometric variability. Thus, for objects with multi-epoch photometry available, we selected the brightest set to determine the extinction towards the objects and thus their intrinsic brightnesses. As we will also show later, the variability is often caused by irregular extinction, using those data with minimum extinction introduces the smallest errors in the determination of the stellar parameters. For this reason, we only used simultaneous photometry when deriving A_{V} values. All the photometric values were corrected for extinction using the reddening law of Cardelli et al. (1989).

Two sources, V833 Ori and GSC 1829-0331, do not have enough simultaneous photometry available to derive extinctions for them and hence they were excluded for the sample. The total
number of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars that can be placed in the HR diagram and for which we can derive stellar luminosities, masses, ages, IR excesses and variabilities in Sect. 3 is therefore reduced to 252 objects.

2.3. Infrared photometry

All the sources were crossmatched with the Two-Micron All Sky Survey (2MASS, see Skrutskie et al. 2006) and with the Wide-Field Infrared Survey Explorer 'AllWISE' all-sky catalogue (hereafter WISE, see Cutri et al. 2013). Both these surveys contain hundreds of millions of stars, guaranteeing a large overlap with Gaia. We used a 3 arcsecond aperture for the crossmatch. The few sources that did not lie within that 3 arcsecond threshold were studied individually and, if present, their IR photometry was included. This provides values and uncertainties for the J, H and K_{s} bands ($1.24,1.66$ and $2.16 \mu \mathrm{~m}$ respectively) and for the W1, W2, W3 and W4 bands (3.4, 4.6, 12, and $22 \mu \mathrm{~m}$ respectively) for most of the HAeBes. Note that for some sources some of the bands may be missing or just be upper limits. We double-checked all infrared matches with the dereddened optical photometry and found no inconsistencies.

2.4. Ho equivalent width and emission line profile

We collected all the $\mathrm{H} \alpha$ equivalent widths (EW) we could find in the literature for the Herbig $\mathrm{Ae} / \mathrm{Be}$ stars. Not only the intensity of the line but also the shape contains very useful information. Therefore, when possible, information about the shape of the $\mathrm{H} \alpha$ line was included. We have classified the $\mathrm{H} \alpha$ line profile as single-peaked (s), double-peaked (d) and showing a P-Cygni profile (P), both regular or inverse. EW and line shape information are presented in Table 3 and Table 6 for the high quality and low quality samples respectively. Many Herbig $\mathrm{Ae} / \mathrm{Be}$ stars are quite variable in their $\mathrm{H} \alpha$ emission and its EW may significantly change at short timescales (e.g. Costigan et al. 2014). This is also the case for the line shape, although spot checks on objects that have more than one $\mathrm{H} \alpha$ observation listed in the literature appear to indicate that there are not many changes in line profile classification (see also for example Aarnio et al. 2017), although changes between single-peaked and double-peaked profiles in a given star are also observed (Mendigutía et al. 2011a). We do note the additional complication that emission line shapes are often difficult to unambiguously classify.

Regarding the $\mathrm{H} \alpha$ EWs compiled, we note that our main references (Fairlamb et al. 2015 and Mendigutía et al. 2011a) provide the non-photospheric contribution of the EW, while most other authors state the observed EW, which includes the photospheric contribution. This photospheric absorption peaks for A0-A1 type objects, with EW values of $\sim+10 \AA$ (See e.g. Fig. 7 of Joner \& Hintz 2015) but is only $\sim+2 \AA$ for B0 objects. We used the Joner \& Hintz (2015) results to correct those EWs that were not corrected for absorption.

We have $\mathrm{H} \alpha$ EWs for 218/252 of the HAeBes and line profiles for 197 of these: 31% are single-peaked, 52% doublepeaked and 17% P-Cygni (of which the vast majority are of regular P-Cygni type). This is in agreement with Finkenzeller \& Mundt (1984) who found that out of 57 HAeBes, 25% were single-peaked, 50% showed double-peaked $\mathrm{H} \alpha$ profiles and 20% presented a P-Cygni profile (both regular and inverse). The main references for the EW values are Baines et al. (2006); Fairlamb et al. (2017); Hernández et al. (2004); Mendigutía et al. (2011a) and Wheelwright et al. (2010). Main references for the line pro-

Fig. 1. 223 Herbig Ae/Be stars in the HR diagram satisfying Eq. 1 constraint. In most cases vertical error bars are dominated by parallax uncertainties. Sources with a white dot have been classified as binaries. The mass of each Pre-Main Sequence track (Bressan et al. 2012) is indicated on the righthand side. An isochrone (Bressan et al. 2012; Marigo et al. 2017) of 2.5 Myr is also shown for reference as a dashed line.

Fig. 2. Left: 223 high quality and 29 low quality Herbig Ae/Be stars in the HR diagram after the cut in astrometric quality described in Eq. 1. Right: 218 Herbig Ae/Be stars in the final high quality sample after removing the 5 problematic objects described in Sect. 3.1. In red those objects present in Table 1 of The et al. (1994). The mass of each Pre-Main Sequence track (Bressan et al. 2012) is indicated on the righthand side. An isochrone (Bressan et al. 2012; Marigo et al. 2017) of 2.5 Myr is also shown for reference as a dashed line.
files are van den Ancker et al. (1998); Baines et al. (2006); Mendigutía et al. (2011a); Vieira et al. (2003) and Wheelwright et al. (2010). The rest of the references can be found in Table 3 and Table 6.

2.5. Binarity

More than half of the Herbig Ae/Be stars are known to be in binary systems (Duchêne 2015). The true number is likely much larger, as there have been a small number of targeted surveys for binarity of HAeBe stars, the largest are Wheelwright et al. (2010)
and Baines et al. (2006) who performed spectro-astromety of 45 HAeBes and 31 HAeBes respectively, probing companions in the $\approx 0.1-2 \operatorname{arcsec}$ range, and Leinert et al. (1997) who performed speckle interferometry of 31 objects, sampling separations of order 0.1 arcsec. 81/252 HAeBes ($\sim 32 \%$) of our set are catalogued as binary systems, a fraction in agreement with the Duchêne (2015) findings if we take into account the large number of faint Herbig Ae/Be stars which have never been studied for binarity. The binary status of each HAeBe is presented in Table 2 and Table 5 for the high quality and low quality samples respectively; main references were Baines et al. (2006); Leinert
et al. (1997) and Wheelwright et al. (2010), we refer to Table 2 and Table 5 for a complete list.

Baines et al. (2006) found a typical wide (few hundred au) separation in the binary systems. Wheelwright et al. (2010) detected no binaries closer than 30 au and established a range of $\approx 40-4000 \mathrm{au}$ in their data.

3. Derived quantities

3.1. Luminosity and Hertzsprung-Russell diagram

Using the parallaxes, atmospheric parameters and extinction values we derived the luminosity for the 252 HAeBes with parallaxes employing a similar method to Fairlamb et al. (2015), which is similar to Montesinos et al. (2009) and van den Ancker et al. (1997). In short, it first consists of using values of $\mathrm{T}_{\text {eff }}$ and surface gravity $(\log (\mathrm{g}))$ to select an atmosphere model from Castelli \& Kurucz (2004) (referred to as CK-models hereafter) for each star to be used for its intrinsic spectral energy distribution (SED). Solar metallicity CK-models were used in all cases but for BF Ori, RR Tau, SV Cep, XY Per and WW Vul for which the metallicities are known not to be solar from the spectroscopic work of Montesinos et al. (2009). When possible, the $\log (\mathrm{g})$ values were estimated from the luminosity class; otherwise they were taken as 4.00 (typical values range from 3.5 to 4.5). Uncertainties in $\log (\mathrm{g})$ and metallicity can be neglected in our study as their effect on the model SED and derived quantities is negligible.

We then scaled the model to the dereddened photometric Johnson V band. The energy distribution is then integrated over frequency to get the total flux. The final luminosities, presented in Table 2 and Table 5 for the high quality and low quality samples respectively, are then obtained by means of the total flux and the parallax. All sources of uncertainty were taken into account at this step including using different CK models for the different temperatures within the $T_{\text {eff }}$ uncertainty range.

The 223 Herbig Ae/Be stars satisfying Eq. 1 constraint are plotted in the resulting HR diagram in Fig. 1. This number is an increase of more than a factor of ten compared to the previous, Hipparcos-based, study by van den Ancker et al. (1998). PMS evolutionary tracks from Bressan et al. (2012) are also plotted in Fig. 1 plus a 2.5 Myr isochrone (Bressan et al. 2012, Marigo et al. 2017), all of them with solar metallicities ($Z=0.01$ and $Y=0.267$).

Before we analyze this sample, we also plot the HR diagram for all 252 objects with parallaxes (the high and low quality samples together, hence including those which failed the Lindegren quality selection criteria) in Fig. 2 on the left. Many of these badly astrometrically behaved sources are located in unphysical positions, significantly below the Main Sequence, validating our approach of removing those from our analyses.

Returning to the HR diagram in Fig. 1, there are still several outliers that do not seem to be PMS objects. GSC 5360-1033 and UY Ori appear way below the Main Sequence, just like the lower quality objects that were removed earlier. However, the Gaia DR2 data of these two objects appear of good quality. Regarding GSC 5360-1033 the situation is not clear, an ambiguous spectral type or photometry for this object, or an incorrect estimation or the extinction may be the reason for the unexpected location of the object. For UY Ori, Fairlamb et al. 2015 assigned a spectral type of B9 to this object, but the photometry listed in simbad indicates a large variability. Pending more certainty, we decided to remove these two objects from the high quality sample and place them in the low quality sample.

MWC 314, MWC 623 and MWC 930 on the other hand appear quite luminous and very much to the right of the Main Sequence, something very unusual for high mass PMS objects. An individual inspection reveals that these objects are more likely to be evolved giants and they appear in the literature as such (e.g. for MWC 314: Carmona et al. 2010, for MWC 623: Lee et al. 2016, for MWC 930: Miroshnichenko et al. 2014). Deciding on the nature of the various Herbig $\mathrm{Ae} / \mathrm{Be}$ candidates in our master sample is not our intention and it is beyond the scope of this paper that is essentially a statistical study. However, these objects occupy a special place in the HR diagram that is consistent with both a pre- as well as a post-Main Sequence nature while there is much information regarding these objects supporting their postMain Sequence nature. We therefore decided to err on the cautious side and remove these as well from further analysis.

The final HR diagram without these $2+3$ problematic objects is presented in Fig. 2 on the right. In addition, in this graph, we highlight the sample of The et al. 1994 bonafide HAeBes in red. This final high quality sample of 218 objects will be the one we will use in the following plots and studies. The information concerning the 34 discarded objects in the low quality sample can be found in the tables at the end of the paper.

In this last high quality HR diagram we see that there are many more low mass HAeBes than high mass HAeBes (69% of the sources are below $4 M_{\odot}$). This is most likely because of the Initial Mass Function (IMF). This trend of more objects for lower masses discontinues below $\sim 2 M_{\odot}$. This is roughly the mass corresponding to the boundary between Main Sequence Aand F-type stars, and thus the traditional lower mass boundary at which the Herbig $\mathrm{Ae} / \mathrm{Be}$ stars were originally selected.

For lower masses the sources are more spread in temperature, occupying larger parts of the PMS tracks, while, instead, the high mass objects tend to be predominately located close to the Zero Age Main Sequence (ZAMS). This is likely because the higher the mass the faster the PMS evolution is. This fast evolution could explain why high mass objects at low temperatures (and thus low surface gravities) are hardly present in Fig. 1 or the sample.

We will encounter more examples below where high mass and low mass objects have different properties.

3.2. Mass and age

Using the isochrones, the mass and age of the Herbig Ae/Be stars were estimated. We used a hundred PARSEC isochrones with solar metallicity (Bressan et al. 2012; Marigo et al. 2017) from 0.01 to 20 Myr , from which we only use the PMS tracks. To each Herbig $\mathrm{Ae} / \mathrm{Be}$ star we assigned the closest two isochrone points in the HR diagram; the solar metallicity isochrones did not match seven sources from the high quality sample in the HR diagram and isochrones with lower metallicities were used in those cases. As each point is associated with a mass (M) and an age, we computed for each HAeBe an average of those values weighted by the distance to the points. The result is an estimate of age and mass for $236 / 252$ HAeBes. These values are presented in Table 3 and Table 6 for the high quality and low quality samples respectively. Uncertainties were derived from the error bars in the HR diagram (Fig. 1 and Fig. 2) keeping a minimum error of 5%. We compared many of our masses and ages with those of Alecian et al. (2013) and Reiter et al. (2018). We found that our determinations of these parameters are consistent with the results of the previous authors.

3.3. Infrared excesses

In the process of deriving the luminosity it is also possible to derive the infrared excess. We have logarithmically interpolated the different dereddened observed fluxes from the J band $(1.24 \mu \mathrm{~m})$ to the W 4 band $(22 \mu \mathrm{~m})$ and defined the infrared excess (E) as:
$E=\frac{\left(F_{\mathrm{e}}-F_{*}\right)_{\left[\lambda_{1}, \lambda_{2}\right]}}{F_{*}}$
F_{e} is the total flux underneath the observed dereddened photometry (the infrared photometry has also been dereddened) and F_{*} is the total photospheric flux below the CK model. λ_{1} and λ_{2} define the range of wavelengths of interest and the total fluxes in the numerator just refer to that range. This measure expresses the excess in terms of the total luminosity of the object. For example, all things being equal, if we have two stars with the same amount of dust surrounding them, with one of them brighter, the infrared re-radiated emission will be larger, but the IR excess as defined here, would be the same as it is a relative measure. The same or a very similar indicator was used by Cote \& Waters (1987, their Eq. 8), Waters et al. (1987, Eq. 3), and more recently by Banzatti et al. (2018) in their Sect. 2.3.

Uncertainties in the infrared excesses were derived using the uncertainties in the observed fluxes and the uncertainties in the temperature (which affect the CK models) of each object.

We have split the total infrared excess in two, a Near Infrared Excess ($1.24-3.4 \mu \mathrm{~m}$, roughly the 2MASS region) and a Mid Infrared Excess ($3.4-22 \mu \mathrm{~m}$, the WISE region). The values for these excesses are presented in Table 3 and Table 6 for the high quality and low quality samples respectively. The total infrared excess $(1.24-22 \mu \mathrm{~m})$ is the sum of the two.

In addition, we also computed the infrared excess at each individual band ($\mathrm{J}, \mathrm{H}, \mathrm{K}_{\mathrm{s}}, \mathrm{W} 1, \mathrm{~W} 2$, W3 and W4) as the flux ratio between the dereddened observed monochromatic flux and the expected flux according to the CK model. The values for these excesses are presented in Table 4 and Table 7 for the high quality and low quality samples respectively

3.4. Variability information

Gaia DR2 does not provide a general variability indicator for all sources. Here, we use Gaia's repeated observations to extract photometric variability information. Gaia DR2 used a total of 22 months of observations and each source was observed repeatedly in a non periodic fashion. Data Release 2 provides the average photometry, the uncertainty on this value and the number of observations. All things being equal, the photometric "error" will be larger for a photometrically variable object than for a stable object. Here we aim to quantify the variability of the objects. We start with the "Variability Amplitude" $\left(A_{i}\right)$ for a certain source i as presented in Deason et al. (2017):
$A_{i}=\sqrt{N_{\mathrm{obs}, i}} e\left(F_{i}\right) / F_{i}$
where $N_{\text {obs }}$ is the number of CCD crossings, F and $e(F)$ are the flux and flux error respectively. This quantity is powerful in identifying objects that show larger flux variations than expected for a stable star. However, in order to statistically assess the level of variability, we introduce a variability indicator V_{i}, which quantifies how much more variable an object is compared to stable objects of the same brightness. In short it compares the Variability Amplitude from Eq. 3 of a given object (i) to that

Fig. 3. Distribution of the variability indicator for Herbig $\mathrm{Ae} / \mathrm{Be}$ stars and two catalogues of photometric standards; one of bright sources (Landolt 2009) and one of faint sources (Clem \& Landolt 2016). As a class, the Herbig Ae/Be stars are more variable than the photometric standards.
of all Gaia objects in a brightness interval of ± 0.1 magnitude around the G band value of the object (i.e. to $A_{a, G_{a} \in\left(a_{1}, a_{2}\right)}$, with a indexing the Gaia catalogue and being $a_{1}=G_{i}-0.1 \mathrm{mag}$ and $\left.a_{2}=G_{i}+0.1 \mathrm{mag}\right)$. The equation is as follows:
$V_{i}=\frac{A_{i}-\bar{A}_{a, G_{a} \in\left(a_{1}, a_{2}\right)}}{\sigma\left[A_{a}\right]_{G_{a} \in\left(a_{1}, a_{2}\right)}}$
G is the Gaia white G band magnitude and σ is the standard deviation. In essence, we subtract the error to flux ratio of each HAeBe, weighted by the number of observations, to the mean of the same expression (A_{a}, Eq. 3) for the sources in the Gaia catalogue within $\pm 0.1 \mathrm{mag}$ of the Herbig star in the G band. Then we divide by the standard deviation of $A_{a} s$ of that Gaia subset. This results in a variability indicator which measures the variability (in standard deviations, σ) for each Herbig $\mathrm{Ae} / \mathrm{Be}$ star compared to the mean of field objects of the same brightness.

For completeness, we note that it is necessary to impose more constraints to exclude the cases in which a larger error is not due to intrinsic variability. Following Deason et al. (2017), Appendix C of Lindegren et al. (2018) and what was done in Gaia Collaboration et al. (2018) we require $N_{\text {obs }} \geqslant 70$ and more than 8 visibility periods (i.e., groups of observations separated by at least four days), plus the Eq. 1 constraint that limits the astrometric quality (and hence the variability indicator just can be derived for sources in the high quality sample). In order to also limit the photometric quality we included the following criterion presented in Gaia Collaboration et al. (2018):

$$
\begin{equation*}
1.0+0.015\left(G_{\mathrm{BP}}-G_{\mathrm{RP}}\right)^{2}<E_{\mathrm{F}}<1.3+0.06\left(G_{\mathrm{BP}}-G_{\mathrm{RP}}\right)^{2} \tag{5}
\end{equation*}
$$

where E_{F} is the flux excess factor and G_{BP} and G_{RP} the Gaia blue and red passbands respectively. Note that these constraints may inevitably exclude many of the very variable HAeBes as they also trace larger errors and hence variability. These constraints will also be biased to discarding binaries and faint sources in crowded areas (Lindegren et al. 2018; Gaia Collaboration et al. 2018).

The variability indicator values for the 193 sources satisfying the previous conditions are presented in Table 3.

Fig. 4. Left: IR excess in the range $1.24-22 \mu \mathrm{~m}$ vs. estimated mass of the objects. The most massive objects (more massive than $\sim 7 M_{\odot}$) barely show an infrared excess. Right: IR excess in the range $1.24-22 \mu \mathrm{~m}$ vs. estimated age. Ages and effective temperatures are respectively colour coded in the legend. The symbols stand for the $\mathrm{H} \alpha$ line profiles: circles (double-peaked), triangles (single-peaked), stars (P-Cygni profile) and diamonds (no information). Note that although it is not necessarily a one-to-one correlation, lower ages correspond to higher masses.

In Fig. 3, we show the V_{i} distribution of Herbig Ae/Be stars and compare it to the V_{i} distribution of bright photometric standards from Landolt (2009) and faint photometric standards taken from Clem \& Landolt (2016). If Eq. 4 would have not been used these two latter samples would have had a different mean in the distribution of A_{i}. The Herbig $\mathrm{Ae} / \mathrm{Be}$ stars appear to show, on average, a larger variability indicator value than the standard stars, being the break at $\sim V_{i}=2$. We performed a two-sample Kolmogorov-Smirnov (KS) statistical test to study whether Herbig $\mathrm{Ae} / \mathrm{Be}$ stars can be drawn from those two samples of standard stars. The result shows that we can reject that hypothesis to within a 0.001 significance and hence this variability indicator differentiates them as a group.

In order to assess the relation between our variability indicator (G band variability) and variability in the V band we compared the magnitude variations in the V band as presented in the International Variable Star Index VSX (Watson et al. 2006) with our variability indicator values. We found that we are tracing variabilities as small as $\sim 0.5 \mathrm{mag}$ with the $V_{i}=2$ cut-off. In Eiroa et al. (2002) 7/23 (30\%) PMS objects homogeneously observed for variability have variabilities above 0.5 mag . In our case 48/193 sources have values above $V_{i}=2(25 \%)$ and hence can be considered as strongly variable. Of those 48,17 are catalogued as UXOR type (Mendigutía 2011c; Oudmaijer et al. 2001; Poxon 2015). There are 5 other UXORs in our sample with V_{i} values, 4 of them have reported optical variabilities smaller than 0.5 mag in the V band. The other one is BO Cep. This object has been reported to have a periodic variability with a single prominent peak with a period of ~ 10 days (Gürtler et al. 1999). The regular non periodic variability of the object is smaller than 0.5 mag which explains why this UXOR has not been detected by our variability indicator. Supporting this, it appears as UXOR in Poxon (2015) but not in Oudmaijer et al. (2001) or Mendigutía (2011c).

To put the variability indicator into perspective, we find that 6 out of 411 photometric standards from Landolt (2009) have
variability indicator values larger than 2 . We would therefore expect only 3 of our 193 Herbig Ae/Be stars for which we could determine V_{i} to be strongly variable, at amplitudes of 0.5 magnitudes in the V band or higher. However, we find 45 more, indicating that a large fraction of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars exhibit strong variations.

In addition, it is interesting to compare our variability indicator with the variability catalogues published alongside the Gaia DR2 general catalogue (Holl et al. 2018). Just 1 every 3000 objects passed the Gaia DR2 stringent selection criteria for variability. 10/252 objects in our list fall in this category and appear as variable in those catalogues. Of the 5 of those that have derived V_{i} values they are larger than $V_{i}=5$.

4. Data analysis

4.1. Infrared excesses

In Fig. 4 the total infrared excess $(1.24-22 \mu \mathrm{~m})$ vs. the estimated mass and age of the sources is plotted. There appears a difference in IR properties between high and low mass stars. Whereas low mass stars show a range of infrared excess, the higher mass stars in general only present very low levels of excess. A similar behaviour is seen when the excess is plotted as function of age; the excess for the youngest objects is smallest. This is probably readily explained by the fact that the more massive PMS objects in the HR diagram have the lowest ages by virtue of their rapidly evolving isochrones, so trends in mass will automatically also be present in those with age. To study trends as a function of age, it would be necessary to consider subsamples with a narrow range in mass. We therefore consider that the main result of this exercise is that high mass objects have a very low infrared excess, and that there appears to be a break at $\sim 7 M_{\odot}$ from where almost no sources with significant excess appear.

Infrared excess from 1.24 to $3.4 \mu \mathrm{~m}$
Fig. 5. IR excess in the range $3.4-22 \mu \mathrm{~m}$ (Mid IR excess) vs. IR excess in the range $1.24-3.4 \mu \mathrm{~m}$ (Near IR excess). The symbols stand for the $\mathrm{H} \alpha$ line profiles: circles (double-peaked), triangles (single-peaked), stars (P-Cygni profile) and diamonds (no information). A linear fit in the \log space is shown in blue $\left(\log \left(\operatorname{Mid} \mathrm{IR}_{\text {excess }}\right)=1.16 \log \left(\right.\right.$ Near $\left.\mathrm{IR}_{\text {excess }}\right)+$ $0.23, r=0.88)$.

Fig. 5 splits the total infrared excess into two, a near-infrared and a mid-infrared part. It demonstrates that the excess at both wavelength ranges are highly correlated with each other (the linear fit in logarithmic space that can be seen in the plot has a correlation coefficient of $r=0.88$). Therefore, it is not unexpected that the $\sim 7 M_{\odot}$ break is also present at near- and mid-infrared.

4.2. Ho equivalent width

Fig. 6 shows the EW as a function of mass and age respectively. As the definition of a Herbig $\mathrm{Ae} / \mathrm{Be}$ star includes the presence of emission, which is mostly from the $\mathrm{H} \alpha$ line, it may not come as a surprise that essentially all measurements are negative (i.e. tracing emission).

The EWs show a large range of values, which appears to increase with increasing mass and decrease with increasing age (studied by Manoj et al. 2006). The older objects typically have lower EW's than younger objects. It is tempting to read an evolutionary effect in this finding - after all it would be expected that the accretion (and therefore emission) would decrease when the PMS objects are closer to the MS. However, we should recall that there is a strong correlation between the age and the mass of the stars, so we may well be looking at a mass effect instead. As the EW is a relative measurement with respect to the stellar continuum, a larger EW for otherwise similar objects indicates a stronger emission line. The observed trend towards higher temperatures/masses and thus higher luminosities implies that the lines become even stronger than the EW alone would seem to imply.

4.3. $\mathrm{H} \alpha$ EW and infrared excess

The correlation between $\mathrm{H} \alpha$ emission, measured by its equivalent width, and near- and mid-infrared excess is studied in Fig. 7 and Table 1 for each one of the infrared bands ($\mathrm{J}, \mathrm{H}, \mathrm{K}_{\mathrm{s}}, \mathrm{W} 1$, W2, W3 and W4). In this case, we computed the infrared excess as the flux ratio between the dereddened observed monochromatic flux and the expected flux according to the CK model at
each band (the values for these excesses are presented in Table 4 and Table 7 for the high quality and low quality samples respectively). In all cases, there is a general and consistent increase of the $\mathrm{H} \alpha$ EW from sources with very little IR excess to those with higher IR excess.

In Table 1 we show that the $\mathrm{H} \alpha$ emission line equivalent width is more correlated with the infrared excess at shorter wavelengths than at larger wavelengths, with the correlation peaking at $2.16 \mu \mathrm{~m}$ (K_{s} band).

An obvious question might be whether there is a causal correlation between the $\mathrm{H} \alpha$ emission and presence of emission due to dust around these objects. The various excesses at various wavebands are correlated with each other (Fig. 5), and as a consequence the IR excess at many wavelengths also correlate with the EW. However, the correlation with $\mathrm{H} \alpha$ is strongest at the K_{s} band which traces the hot dust in the inner disk, suggesting the accretion mechanism or wind activity as traced by $\mathrm{H} \alpha$ is related to the inner parts of the dusty disk (see also Manoj et al. 2006). As presented in Table 1, the correlation rises from a minimum at $1.24 \mu \mathrm{~m}$ (effectively tracing the stellar photosphere) up to $3.4 \mu \mathrm{~m}$ and then goes down again to the same minimum at $22 \mu \mathrm{~m}$ (W4 band), where dust in the outer disk is found. In fact, Mendigutía et al. (2012) discovered the same correlation between IR excess and accretion rate and they found that it is no longer present beyond $20 \mu \mathrm{~m}$.

For comparison purposes, in Fig. 7 the K_{s} band is plotted in the upper panel and the W4 band in the lower. It is noteworthy that for the K_{s} band, where we have the strongest correlation, small EWs are almost only present in sources with little IR excess and, in consonance with Sect. 4.1, for a given $\mathrm{H} \alpha$ EW value low mass stars ($M<7 M_{\odot}$) tend to have higher IR excesses. However, these trends are weaker or non existent in the case of the W4 band, where we have the weaker correlation. This reinforces the idea that the $\mathrm{H} \alpha$ emission is correlated with the inner parts of the disk. Note that in both panels the average excess is still lower for the higher mass objects. The emission line strengths will also be subject of a follow-on study using accretion rates (Wichittanakom et al. in preparation).

4.4. Variability

We conclude this section by studying the variability of the objects and its correlation with the various properties discussed so far, including the $\mathrm{H} \alpha$ line profiles we took from the literature.

The left panel of Fig. 8 presents the variability indicator as function of the total (near plus mid) IR excess. As described in Sect. 3.4 the variability indicator states the number of standard deviations a certain source is separated from the mean of the Gaia objects of the same brightness. No, or hardly any variability is present at the lowest IR excesses but sources can be both variable and non-variable at the higher IR excesses, consistent with van den Ancker et al. (1998) based on a smaller sample.

The figure next to it shows the variability as a function of mass. As high mass stars in this sample generally do not have a strong IR excess, we find that mostly the lower mass and cooler objects display high variabilities, with the break also around 7 M_{\odot}, corresponding to a Main Sequence spectral type of around B3. Although cooler objects tend to have larger variabilities (also observed by van den Ancker et al. 1998), we can observe how the range in temperatures for variable sources is wide in the right panel of Fig. 8, and that there are in fact many Herbig Be stars with very strong variabilities. Hence, this is more likely a trend with mass and not with temperature. We do note that although we detect photometric variability from the $V_{i}=2$ value, the $V_{i}=5$

Fig. 6. Left: $\mathrm{H} \alpha$ EW vs. estimated mass. Right: $\mathrm{H} \alpha$ EW vs. estimated age. Effective temperatures and masses are respectively colour coded in the legend. The symbols stand for the $\mathrm{H} \alpha$ line profiles: circles (double-peaked), triangles (single-peaked), stars (P-Cygni profile) and diamonds (no information).
value is a better separation boundary for the observed trends in both panels of Fig. 8.

The challenge is to identify which property lies at the cause of the variability, is it the mass of the objects, their age or infrared excess emission or something else? An important clue is that many objects with strong variability (above $V_{i}=2$) and line shape information have doubly peaked $\mathrm{H} \alpha$ profiles (31 out of $43 ; 72 \pm 7 \%, 68 \%$ confidence interval). In general, doublepeaked emission line profiles are due to rotating disks, so the data are suggestive of an edge-on disk-type orientation and structure (from the remaining 12 objects they all have a P-Cygni profile and none have a single-peaked profile). The number of variable objects with doubly peaked line profiles is significantly different from the full sample, in which only half of the targets with known line classifications have a double-peaked profile (of the sources with derived variability indicator and known line profile 79 out of $155 ; 51 \pm 4 \%$ are double-peaked and 48 our of 155 ; $31 \pm 4 \%$ are single-peaked). These fractions are significantly different, and we therefore suspect that the variable sources are mostly oriented edge-on, and that the line-of-sight inclination to the objects could be a decisive factor in the cause of the variability. This is in agreement with the trend observed in the left panel of Fig. 8. Sources with large amounts of circumstellar material show large infrared excesses and high or low levels of variability depending on the inclination of their disk whilst sources with little material around have low infrared excesses and low variabilities in all cases (also discussed in van den Ancker et al. 1998).

5. Discussion

5.1. General findings

In the above we have determined fundamental parameters such as temperature, mass, age, IR excess, variability and luminosity for a large sample of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars which was made pos-
sible due to the more than a factor of ten increase in available distances to these objects compared to Hipparcos. With the Gaia DR2 data, the majority of known Herbig Ae/Be stars could be placed in the HR diagram. We found the following:

- There are more low mass objects than high mass objects, with the high mass objects mostly located close to the Main Sequence.
- High mass objects have in general very small infrared excesses and low variability, the properties appear to differ around $7 \mathrm{M}_{\odot}$.
- $\mathrm{H} \alpha$ emission is generally correlated with infrared excess, with the correlation stronger for IR emission at wavelengths tracing the hot dust closest to the star.
- More massive and younger objects have higher $\mathrm{H} \alpha$ EWs.
- When split at $7 \mathrm{M}_{\odot}$ into "low" and "high" mass samples, the $\mathrm{H} \alpha$ - IR excess correlations hold for both mass ranges, with the average excess lower for the higher mass objects.
- Photometric variability can be traced back to those objects with double-peaked $\mathrm{H} \alpha$ emission and large infrared excesses.
- All catalogued UXORs in the sample with detected variabilities above 0.5 mag in the V band appear as strongly variable (above $V_{i}=2$) with the exception of BO Cep (discussed in Sect. 3.4).

Here, we will discuss these findings and their implications for the formation of intermediate mass stars.

5.2. Selection effects

Let us first investigate the various selection effects and biases that could potentially affect the results.

Quality parallaxes: It could be argued that the quality of the astrometric data has an effect on the findings. The parallax errors occupy a comparatively small range, from $\sim 0.016-0.37$ mas, but
because of the large spread in distances, the relative uncertainties can be very large. To investigate whether this has a detrimental effect on the results, we repeated the analysis with only the objects with the very best parallaxes ($\varpi / \sigma_{\varpi}>10$). This, of course, limits the sample and 182/218 objects remain in the high quality sample. These 182 objects are less luminous, which may be expected as in general they have larger parallaxes and are thus closer. As a result they will be less massive and have larger ages than the objects in the entire sample. This, as a consequence of the trends described in previous sections, implies that these objects also show larger infrared excesses and variabilities as well as smaller $\mathrm{H} \alpha$ EWs (see Fig. 4, Fig. 6 and Fig. 8). However, we find that essentially all correlations also hold for the higher quality parallax sample, and if anything, they appear stronger. For example almost all of the high mass sources that have large infrared excesses and variabilities in figures Fig. 4 and Fig. 8 have $\varpi / \sigma_{\varpi}<10$. The inclusion of lower quality parallaxes induces an extra scatter in the results, but the larger sample and wider coverage in luminosity aids in reinforcing them.
Quality identification as Herbig Ae/Be star: Another potential source of error is source misclassification. We have used the largest sample of Herbig Ae/Be stars published to date (Chen et al. 2016 with some added from Alecian et al. (2013); Baines et al. (2006); Carmona et al. 2010; Fairlamb et al. 2015; Hernández et al. (2005); Manoj et al. (2006) and Sartori et al. (2010)). The defining characteristics of HAeBes are not unique to the class, and can often also be found in other types of stars such as classical Be stars, which display $\mathrm{H} \alpha$ emission and a near-infrared excess (e.g. Rivinius et al. 2013) or evolved stars which can have spectral types A and B, display hydrogen recombination emission and be surrounded by dusty shells and disks such as the Luminous Blue Variables and B[e] stars (Davies et al. 2007; Oudmaijer, et al. 1998 on HD 87643). It is therefore inevitable that some sources will have been misclassified. It would be fair to say that the more "classical" Herbig Ae/Be stars going back to the Herbig (1960) and The et al. (1994) papers have been studied in more detail and are better established as young pre-Main Sequence stars.

We therefore studied the The et al. sample of objects (their Table 1, 85 sources out of our 218) separately and find that all correlations do hold for this "gold standard" sample as well. We do find that on average these objects have a larger $\mathrm{H} \alpha$ EW and have larger IR excesses than the full sample. These properties are the defining characteristics of a Herbig Ae/Be star, and it may not be surprising that the first objects to be proposed as Herbig $\mathrm{Ae} / \mathrm{Be}$ stars are on average more extreme in these properties. Yet, again, as with the higher quality parallax sample, the trends are still present in this sub-sample.

Mass distribution of the sample: The known Herbig Ae/Be stars have mostly been found serendipitously, and a large-scale systematic search for them has yet to be carried out. Yet, an interesting question is how representative the present sample is for the class. To this end, we consider the mass distribution of the objects. There are more or less the same number of low mass, A-type objects than higher mass B-type objects. There are more Herbig Be stars than might be expected from the Initial Mass Function, however, the B-type objects are brighter and are sampled from a larger volume, as also attested by their smaller parallaxes. We will therefore expect a larger fraction of Herbig Be stars in the sample. When limiting our sample in distance, we obtain a Herbig Ae/Herbig Be ratio that is close to the IMF. As far as the mass distribution is concerned, we may say that the current sample is representative of the class. One of our future

Fig. 7. $2.16 \mu \mathrm{~m}$ (blue markers) and $22 \mu \mathrm{~m}$ (red markers) infrared excesses defined as $F_{\text {observed }} / F_{C K}$ vs. H α equivalent width (absolute value). Note that this IR excess indicator is a flux ratio and not the one described in Eq. 2 where we integrated under the SED. Dots are Herbig Ae/Be stars with $M<7 M_{\odot}$ and triangles are Herbig Ae/Be stars with $M>7 M_{\odot}$. Lines are linear fits to the data, dashed for HAeBes with $M>7 M_{\odot}$ and in solid colours for HAeBes with $M<7 M_{\odot}$; black solid lines are the linear fits for all the sources (equations and correlation coefficients for these fits to all the sources for all the infrared bands can be seen in Table 1). Note the difference in the scale of the vertical axis between the two panels.

Table 1. Correlation between IR excess and $\mathrm{H} \alpha \mathrm{EW}$ at different wavelengths.

Band	Correlation coefficient (r)	A	B
$\mathrm{J}(1.24 \mu \mathrm{~m})$	0.41	0.15 ± 0.03	0.025 ± 0.034
$\mathrm{H}(1.66 \mu \mathrm{~m})$	0.56	0.32 ± 0.03	0.0024 ± 0.0478
$\mathrm{~K}_{\mathrm{s}}(\mathbf{2 . 1 6} \boldsymbol{\mu \mathrm { m }})$	$\mathbf{0 . 6 0}$	$\mathbf{0 . 4 8} \pm \mathbf{0 . 0 5}$	$\mathbf{0 . 0 4 6} \pm \mathbf{0 . 0 6 6}$
$\mathrm{W} 1(3.4 \mu \mathrm{~m})$	0.57	0.64 ± 0.07	0.15 ± 0.10
W2 $(4.6 \mu \mathrm{~m})$	0.57	0.78 ± 0.09	0.24 ± 0.12
W3 $(12 \mu \mathrm{~m})$	0.52	0.93 ± 0.12	0.79 ± 0.16
W4 $(\mathbf{2 2} \mu \mathrm{m})$	$\mathbf{0 . 4 1}$	$\mathbf{0 . 7 1} \pm \mathbf{0 . 1 2}$	$\mathbf{2 . 0 5} \pm \mathbf{0 . 1 7}$

Notes. Correlation between IR excess (defined as a flux ratio, $\left.\mathrm{F}_{\text {observed }} / \mathrm{F}_{\mathrm{CK}}\right)$ and $\mathrm{H} \alpha \mathrm{EW}$ at different wavelengths for all the sources. The coefficients are defined by: $\log \left(\mathrm{F}_{\text {observed }} / \mathrm{F}_{\mathrm{CK}}\right)=A \log (|\mathrm{EW}|)+\mathrm{B}$. The K_{s} band, with the higher correlation, and the W 4 band are in bold; both are shown in Fig. 7.
goals is to draw an increased and well-selected sampled of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars from the Gaia catalogues.

Binarity: One may think that binarity may affect the observed photometry and for example produce fake levels of variability in our variability indicator. This is because binary sources tend to be more astrometrically and photometrically irregular. We studied the group of binaries against the group of isolated sources
and overall we find that the known binaries are slightly brighter than the objects that have not been reported to be a binary. This is probably a selection effect in that brighter objects were more likely to be included in the binary surveys. We compared the brightnesses of binaries and non-binaries in the Baines et al. (2006), Wheelwright et al. (2010) and Leinert et al. (1997) studies separately and find that within the surveys there are indeed no brightness differences between binaries and non-binaries.

Returning to the Gaia sample; all other properties but infrared excesses, including variability, are similar. We do find that binaries have in general slightly larger IR excesses. With the benefit of hindsight, this is perhaps something that could have been expected. Most of the binaries are distant binaries with separations larger than 0.1 arcsec (Gaia's resolution). Indeed, no binaries are found closer than 30au so it is expected that binarity does not play a significant role in the optical photometry. At the same time, companions could potentially contribute to the infrared emission whose fluxes have been measured with apertures larger than the typical separations. Given that we do detect slight differences in IR-excess between binaries and non-binaries, a preliminary inference would be that the companions may contribute to the infrared flux in some cases.

5.3. Infrared excess as function of mass

Fig. 4 shows the infrared excess as function of mass and age respectively. There is a marked difference in the infrared excess observed towards high and low mass objects. Herbig Be stars more massive than $\sim 7 \mathrm{M}_{\odot}$ in general appear to have little to no excess, while the lower mass objects show a wide range of excesses. There is also a trend with age with the youngest objects having the smallest infrared excess. Although it would be tempting to assume a causal relation between age and presence of dust, and try to explain why the youngest objects have the smallest amount of dust around them, we suspect the stellar mass is the dominant factor. The durations of the PMS evolutionary tracks are progressively shorter for higher masses, and an underlying relation between mass and infrared excess would therefore also appear as a correlation between age and infrared excess.

Either way, the lack of dusty emission from high mass objects is puzzling, as we might expect the more massive objects to be formed in more massive clouds and therefore be more embedded. A natural conclusion would be that at any time of their PMS evolution, these young objects would be surrounded by more dust than their lower mass counterparts and therefore, at any stage, they would have a stronger infrared emission. A counterargument is that the Herbig Be stars are predominately found closer to the ZAMS and are therefore more evolved, having dispersed their circumstellar material. Supporting this idea, AlonsoAlbi et al. (2009) found, from their compilation of millimetre observations of 44 objects, that Herbig Be stars have much weaker millimetre emission than their later type counterparts. In addition, they found that the masses of the disks around Herbig Be stars traced at mm wavelengths are usually 5-10 times lower than those around lower mass stars, with the boundary also around 7 M_{\odot}. These authors suggest that the disk dispersal is more efficient and faster in high mass objects above $7 \mathrm{M}_{\odot}$. Indeed, the disk dispersal times are a steep, declining function with stellar mass, from millions of years for the lower mass stars to tens of thousands of years for the highest mass young stars of $10 \mathrm{M}_{\odot}$ and higher (Gorti et al. 2009).

The latter timescales are comparable to the evolutionary timescales as for example computed by Bressan et al. (2012) for
these massive objects. Thus, the observation here is consistent with the classical scenario that the Kelvin-Helmholtz contraction timescale is much smaller for massive objects compared to the free-fall timescale of the collapsing parental cloud. In this scenario, the massive young stars only become visible once they are on, or close to, the Main Sequence - the so-called birthline. We will discuss more on this later, but note that with this interpretation one still would expect a range of infrared excesses in any sample. This is consistent with what we find for massive objects (larger than $7 \mathrm{M}_{\odot}$); a large number of low excess stars, but still a few with noticeable excess (see Fig. 4).

Moving to the lower mass objects, which do display a large range of infrared excess emission, an immediate question to ask is whether we can detect any evolutionary effect in the sense that objects that are further evolved have smaller infrared excesses, as one expected from the progressive dust dispersal, and as suggested by Fuente et al. (1998). For example, if the inside out clearing model of disk evolution is correct, we should see a trend at each PMS track from high excess to little excess.

However, it appears Herbig Ae/Be stars do not show any consistent evolution of the infrared excess from high to low excess at any mass range. There are many objects appearing younger than 2.5 Myr or even 1 Myr at all mass ranges with little IR excess. Arguably the lack of an evolutionary effect can be explained by the size of the error bars on for example the luminosity. The evolutionary timescales vary strongly with mass (and thus luminosity), masking any trend of infrared excess emission with age. Here, we would highlight that many young Herbig Ae stars show little excess. By looking at these objects in the right panel of Fig. 2 it is not difficult to find sources with error bars small enough to discard the contribution of uncertainty to the problem. Finally, the contamination by binaries as discussed in Sect. 5.2 can play a role in here as many HAeBes can still remain as undetected binaries.

We should also note that the underlying assumption of the evolutionary calculations is that the conditions under which the stars form are uniform, the accretion rates a smooth function of time resulting in an overall similar evolution for all stars. However, the final configuration is undoubtedly affected by inhomogeneities, varying accretion rates and even the masses of the initial clouds. Nevertheless, looking for real evolutionary effects in the spectral energy distributions requires selecting subsamples of objects that are located at or close to the same mass tracks. This may require even more precise parallaxes than can be provided by Gaia at the moment in many cases. It also requires precise determinations of the atmospheric parameters and extinction values. A proper statistical study with high quality parameters of the evolutionary properties of the HAeBes as they move towards the Main Sequence is hence still pending and planned for the future.

5.4. Variability in terms of the UXOR phenomenon

The variability indicator that was developed specifically for the Gaia data demonstrates that the class of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars is more variable than the general population of stars. Fig. 8 shows that the lower mass objects are much more photometrically variable than the higher mass objects, for which the variability appears to cease beyond $\sim 7 \mathrm{M}_{\odot}$. The photometrically variable objects contain most of the so-called UXOR variables reported in the literature. Using the compilation of UXOR variables by Mendigutía (2011c); Oudmaijer et al. (2001) and Poxon (2015), we find that 17 out of the 48 strongly variable objects - those with variability indicator values larger than 2 , representing vari-

Fig. 8. Left: Variability indicator vs. IR excess in the range $1.24-22 \mu \mathrm{~m}$. It can be seen how objects with the lower IR excess do not show high variability. Right: Variability indicator vs. estimated mass. It can be seen how the most massive objects (more massive than $\sim 7 M_{\odot}$) do barely show variability. Line profiles and temperatures are colour coded in the legend in the left and right panel respectively. The symbols stand for the $\mathrm{H} \alpha$ line profiles: circles (double-peaked), triangles (single-peaked), stars (P-Cygni profile) and diamonds (no information). The $V_{i}=2$ and $V_{i}=5$ values are stressed for clarity.
ations of 0.5 magnitudes (in the V band) or higher - are classified as UXORs. The remaining 5 UXORs with variability indicator values present in the sample have documented variabilities below 0.5 magnitudes with the exception of BO Cep (discussed in Sect. 3.4).

The defining characteristic of the UXOR phenomenon is not only the photometric variability but also the reddening and blueing associated during the variations. The explanation put forward for this behaviour is the obscuration of the star by a rotating, inhomogeneous, dusty edge-on disk. The objects first become redder when dust obscures the object, and can even become blue at their faintest phases, when the direct light from the stars is blocked and, predominately blue light is scattered into the line of sight. As the polarization - resulting from scattered light also peaks during the faintest phases (e.g. Grinin 2000), the obscuring disk hypothesis is favoured. Interestingly, observational evidence other than the polarization supporting this conclusion has been relatively sparse.

With the large sample of Herbig Ae/Be stars, and the large number of UXORs among them, we can repeat a similar experiment using the $\mathrm{H} \alpha$ line as a proxy for the inclination of the circumstellar disks. We will consider the line profiles of the $\mathrm{H} \alpha$ emission in tandem with the variability indicator. Fig. 8 shows that all but twelve of the strongly variable objects with documented line profiles (above $V_{i}=2$, those with $\Delta V>0.5 \mathrm{mag}$) have double-peaked $\mathrm{H} \alpha$ emission. In fact, the five objects for which no line profile is listed have, to our knowledge, no reported profiles. The occurrence of double-peaked profiles in the highly variable sample is significantly higher than for the other objects (see Sec. 4.4). It is significant that the other twelve objects have P-Cygni profiles and none of them show a singlepeaked profile. The P-Cygni profile is often related to episodic energetic phenomena and it is not unexpected that it is also
traced by our variability indicator. Given that doubly peaked line profiles are most easily explained by at least part of the emission originating in a rotating disk leads us to conclude that the photometrically variable objects are seen edge-on and surrounded by a disk-like structure. It is true that outflows or winds not limited to the disk can produce double-peaked $\mathrm{H} \alpha$ profiles (Kurosawa et al. 2006; Tambovtseva et al. 2014). Supporting the hypothesis of edge-on disks being the main cause of photometric variability, we find in variability the same separation at $\sim 7 \mathrm{M}_{\odot}$ between low and high mass objects we found when studying IR excesses, which suggests that photometric variability and IR excess have the same cause. In addition, sources with high IR excesses have both high and low variability levels, which can be understood as depending on the disk inclination, while sources with lower IR excesses show little variability in all cases (left panel of Fig. 8, discussed in Sect. 4.4). This would also explain the few high mass strongly variable objects that can be seen in the right panel of Fig. 8; they are mostly the ones with high IR excess in the left panel of Fig. 4 (discussed before in Sect. 5.3). Given that an edge-on orientation is the major and main ingredient of the dust obscuration hypothesis, these results lend very strong support to it using a large sample of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars.

The large fraction of objects with double-peaked line profiles or variability is in agreement with the model predictions by Natta \& Whitney (2000) who worked out how many Herbig $\mathrm{Ae} / \mathrm{Be}$ stars would undergo the UXOR phenomenon considering the scale heights of dusty disks and under which inclinations the photometric variability would still be visible. They conclude that around half of the Herbig Ae stars could be UXORs. In our high quality sample we have 85 A type stars with variability indicator values and just 16 of them were previously listed as UXORs, but again most of them have been largely unstudied. However, of the 25 A type stars with variabilities above $V_{i}=2,13$ are known

UXORs. This means that for the Herbig Ae stars for which we detect variability at the $V_{i}=2$ level, $\sim 52 \%$ are known UXORs (and just two have P-Cygni profiles). Moreover, this implies that we are retrieving $\sim 81 \%$ of known A-type UXORs with our variability indicator and hence, assuming that all the 25 A type stars with variabilities above $V_{i}=2$ are of UXOR type, there should be about 31/85 UXORs in the sample. In turn this would imply that $\sim 37 \%$ of all Herbig Ae stars belong to the UXOR class. If we also take into account that we have potentially removed some UXORs, possibly the most variable ones, from consideration when applying the constraints described in Sec. 3.4 we get to values close to the 50% predicted by Natta \& Whitney (2000).

Finally, Davies et al. (2018) recently studied in detail the UXOR object CO Ori, which has single-peaked $\mathrm{H} \alpha$ emission. Consequently, they found that the inclination of its disk is of $\sim 30^{\circ}$ (i.e. it is nearly face-on). In this particular case, whether if the disk is still causing the UXOR phenomenon or if it is caused through fluctuations in the circumstellar material outside the disk is still uncertain. We could not derive a variability indicator value for this object to assess its variability. Inspired by this example, we took a look to the other UXORs in our sample with singlepeaked profiles, they all have variabilities below $V_{i}=2$ in our variability indicator (HD 100546, HD 142527, HD 98922 and IL Cep), this suggesting a category of low variability UXORs with nearly face-on disks. Nonetheless, the results presented in this section strongly support the idea that most UXORs are caused by edge-on disks, which are responsible of large photometric variabilities.

5.5. Missing objects in the HR diagram

When inspecting the right panel of Fig. 2, it appears that most Herbig Be stars are located relatively close to the Main Sequence, whereas the lower mass Herbig Ae stars occupy a larger part of their evolutionary tracks, contracting to higher temperatures at constant luminosity. In other words, the late type Herbig Be and Herbig Ae stars at high luminosities (and low surface gravities) that would occupy the tracks towards the locations of B-type stars on the Main Sequence are missing. It is only due to the use of Gaia parallaxes, expanding the number of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars with well established luminosities that we can make this observation.

In our discussion earlier, we mentioned the fact that these objects could still be heavily embedded in their parental clouds, preventing them from being optically visible when evolving on their way to the Main Sequence. There is evidence for optically invisible, but infrared bright objects at locations in these regions of the HR-diagram. For example, Pomohaci et al. (2017) were the first to spectrally type an infrared bright Massive Young Stellar Object based on the, rare, absorption spectrum at nearinfrared wavelengths (higher order Brackett lines are in absorption for this object, while $\operatorname{Br} \gamma$ is in emission). They found that the object could be fitted with that of an A-type giant star. Had this object been optically visible, it would have occupied the empty region in the right panel of Fig.2. To this, we add the early Btype Herbig Be stars/infrared bright MYSOs PDS 27 and PDS 37 (Ababakr et al. 2015). They are found in the upper regions of the HR diagram, slightly off the Main Sequence. They are optically visible, but not overly bright at $V \sim 13 \mathrm{mag}$, and have not been included in many (optical) magnitude limited catalogues. Thus, there are several examples that might lead us to conclude that the - implicit - optical brightness limit of any catalogue of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars would prevent the inclusion of massive preMain Sequence stars on the horizontal portions of the evolution-
ary PMS tracks. However, these object are present in Gaia DR2 although they are yet uncatalogued as HAeBes. In a sense this is a situation similar to that outlined for the low infrared excesses observed toward the Herbig Be stars that are mostly located close to the Main Sequence. This could be explained by the fact that the objects would be embedded and thus optically invisible or faint in earlier phases of their evolution.

Further observations of optically fainter objects will be necessary to settle this issue. Additional progress can be made by connecting the PMS evolutionary tracks with radiative transfer codes to provide synthetic observations (as e.g. Davies et al. 2011, or Zhang et al. 2014 for Massive Young Stellar Objects) extended to optical wavelengths in the Herbig Be mass range. Related to the "missing" high mass stars in the HR diagram, it will be important to fill the historic, and entirely man-made, gap between the Herbig Ae stars and the T-Tauri stars. The latter are confined to have spectral types G-K-M, and typically Herbig $\mathrm{Ae} / \mathrm{Be}$ stars, in this case by definition, have spectral types A and B. We are missing out the F-type stars, resulting in an incomplete coverage of the HR diagram for pre-Main Sequence stars.

5.6. On the difference between Herbig Ae and Herbig Be stars

From the above it appears that the dusty disks surrounding Herbig Ae and Herbig Be stars are different, with the break in IR excess occurring at $7 \mathrm{M}_{\odot}$ (around B3 spectral type), a value which was also found by Alonso-Albi et al. (2009) from their compilation of millimetre emission tracing the outer parts of the dusty disks. As discussed, given the much stronger radiation field from B-stars, both in intensity and photon-energies, the most straightforward explanation for the much less massive disks of higher mass objects is a more efficient disk dispersal mechanism (see e.g. Gorti et al. 2009). This also explains why the same $7 \mathrm{M}_{\odot}$ break is seen in variability (Fig. 8). As described in Sect. 5.4, the high levels of variability in some sources are caused by edge-on dusty disks. A more efficient disk dispersal mechanism beyond $7 \mathrm{M}_{\odot}$ would result in these sources showing no strong variability in our indicator. It also explains why the objects with the lower IR excesses are not strongly variable while the rest can have both high and low variability values.

Other studies of large samples of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars indicate a break in properties at a much lower mass of $3 \mathrm{M}_{\odot}$, around the B7 spectral boundary. Fairlamb et al. (2015) studied the accretion rates, which are proportional to the mass of the objects, and found a different slope for lower mass than for higher mass objects. Ababakr et al. (2017), extending the work of Mottram et al. (2007), found a distinct difference in spectro-polarimetric properties across the $\mathrm{H} \alpha$ line between the Herbig Ae and late Be type stars on the one hand and earlier Herbig Be type objects on the other hand. These authors also point out the similarity in the $\mathrm{H} \alpha$ spectro-polarimetry of the Herbig Ae stars and T-Tauri stars. Finally, Mendigutía et al. (2011a) noted the difference in $\mathrm{H} \alpha$ variability; Herbig Ae and late Be stars are largely variable, whereas Herbig Be stars are not. Later, Fang et al. (2013) showed that T-Tauri stars display even more variable $\mathrm{H} \alpha$ emission - again hinting at a similar accretion mechanism for the T-Tauri stars and Herbig Ae stars.

How can we reconcile the fact that some studies show a different break in properties than others? It is worth pointing out that the latter investigations consider regions much closer to the star than the dusty emission. Fairlamb et al. (2015) derives accretion rates from the UV-excess, which trace the shocked material on the stellar surface, Ababakr et al. (2017)'s spectropolarimetry
traces the free electrons in ionized material at distances of order stellar radii from the stars. The spectro-polarimetric properties of the B-type stars can be explained by stable circumstellar disks, while the line properties for T-Tauri and Herbig Ae objects are consistent with magnetically controlled accretion. Likewise, the $\mathrm{H} \alpha$ emission traces the ionized zones close to the star, such as the accretion columns and circumstellar disks and the variability is explained due to the accretion columns orbiting the central star (e.g Kurosawa et al. 2008).

Earlier, we showed that the IR fluxes and $\mathrm{H} \alpha$ properties are largely correlated, but that the IR fluxes are smaller for the earlier type objects. We therefore conclude this section with the observation that the infrared and millimetre emission trace the circumstellar disks and originates much further from the stars than the UV, hydrogen recombination emission and free electrons which trace the accretion onto the stars. The break in accretion mechanism appears to occur around $3 \mathrm{M}_{\odot}$, whereas the disk dispersal becomes significant at higher masses, $7 \mathrm{M}_{\odot}$.

6. Conclusions

In this paper we have collated the largest astrometric dataset of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars. We present parallaxes for the vast majority of known Herbig Ae/Be stars and have gathered atmospheric parameters, optical and infrared photometry, extinction values, $\mathrm{H} \alpha$ emission line information, binary statistics, and devised an objective measure for the photometric variability. From these we derive luminosities which allow us to place the objects in an HR diagram, containing over ten times more objects than previously possible.

Thus, we homogeneously derived luminosities, distances, masses, ages, variabilities and infrared excesses for the most complete sample of Herbig $\mathrm{Ae} / \mathrm{Be}$ stars to date. We investigated the various properties and reach the following conclusions:

1. The Gaia photometric variability indicator as developed here indicates that $48 / 193$ or $\sim 25 \%$ of all Herbig Ae/Be stars are strongly variable. We find that the presence of variability correlates very well with the $\mathrm{H} \alpha$ line profile. The variable objects display doubly peaked profiles, indicating an edge-on disk. It had been suggested that this variability is in most cases due to asymmetric dusty disk structures seen edge-on. The observation here is the most compelling confirmation of this hypothesis. Most sources catalogued as UXORs in the sample appear as strongly variable with double-peaked profiles. The fraction of strongly variable A-type objects is close to that found for the A-type objects with the UXOR phenomenon.
2. High mass stars do not display an infrared excess and show no strong photometric variability. Several suggestions have been put forward to explain this. These include fast evolutionary timescales and fast dust dispersion timescales for high mass objects. We do note that the break is around $7 \mathrm{M}_{\odot}$, which is intriguingly similar to other statistical studies related to dusty disks around Herbig Ae/Be stars which signpost a different or more efficient disk dispersal mechanism for high mass objects.
3. Whereas the break in IR properties and photometric variabilities occurs at $7 \mathrm{M}_{\odot}$, various $\mathrm{H} \alpha$ line properties including mass accretion rates, spectropolarimetric properties and emission line variability seem to differ at a lower mass, $3 \mathrm{M}_{\odot}$. The latter has been linked to different accretion mechanisms at work; magnetospheric accretion for the A-type objects and
another mechanism, possibly boundary layer accretion, for the B-type objects. The differing IR and variability properties are related to different or differently acting (dust-)disk dispersal mechanisms, which occurs at much larger size scales than the accretion traced by hydrogen recombination line emission.

Finally, the findings presented in this paper signal just the beginning in unveiling the formation of intermediate mass stars using Gaia. Gaia presents us with an excellent opportunity to search and identify new Herbig $\mathrm{Ae} / \mathrm{Be}$ stars, resulting in a wellselected and properly characterized sample. The results presented here will assist greatly in identifying new Herbig $\mathrm{Ae} / \mathrm{Be}$ objects from the more than a billion stars with astrometric parameters in Gaia. This is the subject of our follow-on study, the STARRY project.

Acknowledgements. The STARRY project has received funding from the European Union's Horizon 2020 research and innovation programme under MSCA ITN-EID grant agreement No 676036. This work has made use of data from the European Space Agency (ESA) mission Gaia (https://www. cosmos.esa.int/gaia), processed by the Gaia Data Processing and Analysis Consortium (DPAC, https://www.cosmos.esa.int/web/gaia/dpac/ consortium). Funding for the DPAC has been provided by national institutions, in particular the institutions participating in the Gaia Multilateral Agreement. This research also made use of Astropy, a community-developed core Python package for Astronomy (Astropy Collaboration, 2013), the TOPCAT tool (Taylor 2005) and the VizieR catalogue access tool and the SIMBAD database, operated at CDS, Strasbourg, France. This research was made possible through the use of the AAVSO Photometric All-Sky Survey (APASS), funded by the Robert Martin Ayers Sciences Fund. We thank the referee for his/her insightful comments which have improved the paper.

References

Aarnio, A. N., Monnier, J. D., Harries, T. J., et al. 2017, ApJ, 848, 18
Ababakr, K. M., Fairlamb, J. R., Oudmaijer, R. D., \& van den Ancker, M. E. 2015, MNRAS, 452, 2566
Ababakr, K. M., Oudmaijer, R. D., \& Vink, J. S. 2016, MNRAS, 461, 3089
Ababakr, K. M., Oudmaijer, R. D., \& Vink, J. S. 2017, MNRAS, 472, 854
Acke, B., van den Ancker, M. E. \& Dullemond, C. P. 2005, A\&A, 436, 209
Alecian, E., Wade, G. A., Catala, C., et al. 2013, MNRAS, 429, 1001
Alonso-Albi, T., Fuente, A., Bachiller, R., et al. 2009, A\&A, 497, 117
van den Ancker, M. E., The, P. S., Feinstein, A., et al. 1997, A\&AS, 123, 63
van den Ancker, M. E., de Winter, D., \& Tjin A Djie, H. R. E. 1998, A\&A, 330, 145
Arenou, F., Luri, X., Babusiaux, C., et al. 2018, submitted to A\&A.
Aspin, C. 1998, A\&A, 335, 1040
Bailer-Jones, C. A. L., Rybizki, J., Fouesneau, M., et al. 2018, submitted to ApJ. Bailer-Jones, C. A. L. 2015, PASP, 127, 994
Baines, D., Oudmaijer, R. D., Porter, J. M., \& Pozzo, M. 2006, MNRAS, 367, 737
Banzatti, A., Garufi, A., Kama, M., et al. 2018, A\&A, 609, L2
Biller, B., Lacour, S., Juhász, A., et al. 2012, ApJ, 753, L38
Boehm, T., \& Catala, C. 1995, A\&A, 301, 155
Boersma, C., Peeters, E., Martín-Hernández, N. L., et al. 2009, A\&A, 502, 175
Borges Fernandes, M., Kraus, M., Lorenz Martins, S., \& de Araújo, F. X. 2007, MNRAS, 377, 1343
Bouvier, J., Alencar, S. H. P., Harries, T. J., Johns-Krull, C. M., \& Romanova, M. M. 2007, Protostars and Planets V, 479

Bressan, A., Marigo, P., Girardi, L., et al. 2012, MNRAS, 427, 127
Cardelli, J. A., Clayton, G. C., \& Mathis, J. S. 1989, ApJ, 345, 245
Carmona, A., van den Ancker, M. E., Audard, M., et al. 2010, A\&A, 517, A67
Castelli, F., \& Kurucz, R. L. 2004, arXiv:astro-ph/0405087
Cauley, P. W., \& Johns-Krull, C. M. 2015, ApJ, 810, 5
Chelli, A., Cruz-Gonzalez, I., \& Reipurth, B. 1995, A\&AS, 114, 135
Chen, P. S., Shan, H. G., \& Zhang, P. 2016, New A, 44, 1
Clem, J. L., \& Landolt, A. U. 2016, AJ, 152, 91
Connelley, M. S., Reipurth, B. \& Tokunaga, A. T. 2008, AJ, 135, 2496.
Corporon, P., \& Lagrange, A.-M. 1999, A\&AS, 136, 429
Costigan, G., Vink, J. S., Scholz, A., Ray, T., \& Testi, L. 2014, MNRAS, 440, 3444
Coulson, I. M., \& Walther, D. M. 1995, MNRAS, 274, 977
Coté, J., \& Waters, L. B. F. M. 1987, A\&A, 176, 93

Cutri, R. M., Wright, E. L., Conrow, T., et al. 2013, Explanatory Supplement to the AllWISE Data Release Products, by R. M. Cutri et al. ,
Davies, B., Oudmaijer, R. D., \& Sahu, K. C. 2007, ApJ, 671, 2059
Davies, B., Hoare, M. G., Lumsden, S. L., et al. 2011, MNRAS, 416, 972
Davies, C. L., Kreplin, A., Kluska, J., et al. 2018, MNRAS, 474, 5406
Deason, A. J., Belokurov, V., Erkal, D., Koposov, S. E., \& Mackey, D. 2017, MNRAS, 467, 2636
Doering, R. L., \& Meixner, M. 2009, AJ, 138, 780
Duchêne, G. 2015, Ap\&SS, 355, 291
Dullemond, C. P., \& Dominik, C. 2004a, A\&A, 417, 159
Dullemond, C. P., \& Dominik, C. 2004b, A\&A, 421, 1075
Dullemond, C. P., \& Dominik, C. 2005, A\&A, 434, 971
Dunhill, A. C., Cuadra, J., \& Dougados, C. 2015, MNRAS, 448, 3545
Dunkin, S. K., Barlow, M. J., \& Ryan, S. G. 1997, MNRAS, 290, 165
Eiroa, C., Oudmaijer, R. D., Davies, J. K., et al. 2002, A\&A, 384, 1038
Evans, D. W., Riello, M., De Angeli, F., et al. 2018, ArXiv e-prints arXiv:1804.09368
Fairlamb, J. R., Oudmaijer, R. D., Mendigutía, I., Ilee, J. D., \& van den Ancker, M. E. 2015, MNRAS, 453, 976

Fairlamb, J. R., Oudmaijer, R. D., Mendigutia, I., Ilee, J. D., \& van den Ancker, M. E. 2017, MNRAS, 464, 4721

Fang, M., Kim, J. S., van Boekel, R., et al. 2013, ApJS, 207, 5
Arellano Ferro, A., \& Giridhar, S. 2003, A\&A, 408, L29
Finkenzeller, U., \& Mundt, R. 1984, A\&AS, 55, 109
Folsom, C. P., Wade, G. A., Kochukhov, O., et al. 2008, Contributions of the Astronomical Observatory Skalnate Pleso, 38, 245
Frasca, A., Miroshnichenko, A. S., Rossi, C., et al. 2016, A\&A, 585, A60
Friedemann, C., Guertler, J., \& Loewe, M. 1996, A\&AS, 117, 205
Fuente, A., Martin-Pintado, J., Bachiller, R., Neri, R., \& Palla, F. 1998, A\&A, 334, 253
Gaia Collaboration, Prusti, T., de Bruijne, J. H. J., et al. 2016, A\&A, 595, A1.
Gaia Collaboration, Babusiaux, C., van Leeuwen, F., et al. 2018, accepted for publication by A\&A.
Gaia Collaboration, Brown, A. G. A., Vallenari, A., et al. 2018, ArXiv e-prints, arXiv:1804.09365.
Gorti, U., Dullemond, C. P., \& Hollenbach, D. 2009, ApJ, 705, 1237
Grady, C. A., Hamaguchi, K., Schneider, G., et al. 2010, ApJ, 719, 1565
Gray, R. O., \& Corbally, C., J. 2009, Stellar Spectral Classification by Richard O. Gray and Christopher J. Corbally. Princeton University Press, 2009. ISBN: 978-0-691-12511-4
Grinin, V. P. \& Rostopchina, A. N. 1996, Astronomy Reports, 40, 171
Grinin, V. P. 2000, Disks, Planetesimals, and Planets, 219, 216
Grundstrom, E. D., \& Gies, D. R. 2006, ApJ, 651, L53
Gürtler, J., Friedemann, C., Reimann, H.-G., et al. 1999, Astronomy and Astrophysics Supplement Series, 140, 293
Hamaguchi, K., Choi, M., Corcoran, M. F., et al. 2008, ApJ, 687, 425-432
Herbig, G. H. 1960, ApJS, 4, 337
Herbig, G. H. \& Bell, K. R. 1988, Third catalog of emission-line stars of the Orion population.
Hernández, J., Calvet, N., Briceño, C., Hartmann, L., \& Berlind, P. 2004, AJ, 127, 1682
Hernández, J., Calvet, N., Hartmann, L., et al. 2005, AJ, 129, 856
Holl, B., Audard, M., Nienartowicz, K., et al. 2018, accepted for publication by A\&A.
Honda, M., Maaskant, K., Okamoto, Y. K., et al. 2015, ApJ, 804, 143
Hou, W., Luo, A.-L., Hu, J.-Y., et al. 2016, Research in Astronomy and Astrophysics, 16, 138
Ilee, J. D., Fairlamb, J., Oudmaijer, R. D., et al. 2014, MNRAS, 445, 3723
Joner, M. D., \& Hintz, E. G. 2015, AJ, 150, 204
Klement, R., Carciofi, A. C., Rivinius, T., et al. 2017, A\&A, 601, A74
Kraus, S., Calvet, N., Hartmann, L., et al. 2012, ApJ, 746, L2
Kraus, S. 2015, Ap\&SS, 357, 97
Kubát, J., Saad, S. M., Kawka, A., et al. 2010, A\&A, 520, A103
Kučerová, B., Korčáková, D., Polster, J., et al. 2013, A\&A, 554, A143
Kurosawa, R., Harries, T. J. \& Symington, N. H. 2006, MNRAS, 370, 580
Kurosawa, R., Romanova, M. M., \& Harries, T. J. 2008, MNRAS, 385, 1931
Lazareff, B., Berger, J.-P., Kluska, J., et al. 2017, A\&A, 599, A85
Landolt, A. U. 2009, AJ, 137, 4186
Lee, C.-D., Chen, W.-P. \& Liu, S.-Y. 2016, A\&A, 592, A130
Leinert, C., Richichi, A., \& Haas, M. 1997, A\&A, 318, 472
Lindegren, L., Hernandez, J., Bombrun, A., et al. 2018, accepted for publication by A\&A.
Liu, Q. Z., van Paradijs, J., \& van den Heuvel, E. P. J. 2000, A\&AS, 147, 25
Lumsden, S. L., Hoare, M. G., Urquhart, J. S., et al. 2013, ApJS, 208, 11
Luri, X., Brown, A. G. A., Sarro, L. M., et al. 2018, accepted for publication by A\&A.
Maaskant, K. M., Honda, M., Waters, L. B. F. M., et al. 2013, A\&A, 555, A64
Maheswar, G., Manoj, P., \& Bhatt, H. C. 2002, A\&A, 387, 1003
Malkov, O. Y., Oblak, E., Snegireva, E. A., \& Torra, J. 2006, A\&A, 446, 785
Manoj, P., Bhatt, H. C., Maheswar, G., \& Muneer, S. 2006, ApJ, 653, 657

Marigo, P., Girardi, L., Bressan, A., et al. 2017, ApJ, 835, 77
Marconi, M., \& Palla, F. 1998, ApJ, 507, L141
Marston, A. P. \& McCollum, B. 2008, A\&A, 477, 193
Mayer, A., Deschamps, R., \& Jorissen, A. 2016, A\&A, 587, A30
Meeus, G., Waters, L. B. F. M., Bouwman, J., et al. 2001, A\&A, 365, 476
Mendigutía, I., Eiroa, C., Montesinos, B., et al. 2011a, A\&A, 529, A34
Mendigutía, I., Calvet, N., Montesinos, B., et al. 2011b, A\&A, 535, A99
Mendigutía, I. 2011c, Ph.D. thesis, Universidad Autónoma de Madrid
Mendigutía, I., Mora, A., Montesinos, B., et al. 2012, A\&A, 543, A59
Millour, F., Chesneau, O., Borges Fernandes, M., et al. 2009, A\&A, 507, 317
Miroshnichenko, A. S., Fremat, Y., Houziaux, L., et al. 1998, Astronomy and Astrophysics Supplement Series, 131, 469
Miroshnichenko, A. S., Gray, R. O., Vieira, S. L. A., Kuratov, K. S., \& Bergner, Y. K. 1999, A\&A, 347, 137

Miroshnichenko, A. S., Chentsov, E. L., Klochkova, V. G., et al. 2000, Astronomy and Astrophysics Supplement Series, 147, 5
Miroshnichenko, A. S., Bjorkman, K. S., Chentsov, E. L., et al. 2002, A\&A, 388, 563
Miroshnichenko, A. S., Levato, H., Bjorkman, K. S., et al. 2004, A\&A, 417, 731
Miroshnichenko, A. S., Manset, N., Zharikov, S. V., et al. 2014, Advances in Astronomy, 2014, E7
Monnier, J. D., Millan-Gabet, R., Billmeier, R., et al. 2005, ApJ, 624, 832
Montesinos, B., Eiroa, C., Mora, A., \& Merín, B. 2009, A\&A, 495, 901
Morrell, N., \& Levato, H. 1991, ApJS, 75, 965
Mottram, J. C., Vink, J. S., Oudmaijer, R. D., \& Patel, M. 2007, MNRAS, 377, 1363
Nakano, M., Sugitani, K., Watanabe, M., et al. 2012, AJ, 143, 61
Natta, A., Grinin, V. P., Mannings, V., \& Ungerechts, H. 1997, ApJ, 491, 885
Natta, A., \& Whitney, B. A. 2000, A\&A, 364, 633
Oudmaijer, R. D., \& Drew, J. E. 1997, A\&A, 318, 198
Oudmaijer, R. D., Busfield, G., \& Drew, J. E. 1997, MNRAS, 291, 797
Oudmaijer, R. D., Proga, D., Drew, J. E., et al. 1998, MNRAS, 300, 170
Oudmaijer, R. D., \& Drew, J. E. 1999, MNRAS, 305, 166
Oudmaijer, R. D., Palacios, J., Eiroa, C., et al. 2001, A\&A, 379, 564
Oudmaijer, R. D. 2017, The B[e] Phenomenon: Forty Years of Studies, 508, 175
Patel, P., Sigut, T. A. A., \& Landstreet, J. D. 2017, ApJ, 836, 214
Pecaut, M. J., \& Mamajek, E. E. 2013, ApJS, 208, 9
Pogodin, M. A., Hubrig, S., Yudin, R. V., et al. 2012, Astronomische Nachrichten, 333, 594
Polster, J., Korčáková, D., Votruba, V., et al. 2012, A\&A, 542, A57
Pomohaci, R., Oudmaijer, R. D., Lumsden, S. L., Hoare, M. G., \& Mendigutía, I. 2017, MNRAS, 472, 3624

Poxon, M. 2015, Journal of the American Association of Variable Star Observers (JAAVSO), 43, 35
Reiter, M., Calvet, N., Thanathibodee, T., et al. 2018, ApJ, 852, 5
Rivinius, T., Carciofi, A. C., \& Martayan, C. 2013, A\&A Rev., 21, 69
Sartori, M. J., Gregorio-Hetem, J., Rodrigues, C. V., Hetem, A., Jr., \& Batalha, C. 2010, AJ, 139, 27-38

Schöller, M., Pogodin, M. A., Cahuasquí, J. A., et al. 2016, A\&A, 592, A50
Schütz, O., Meeus, G., Carmona, A., Juhász, A., \& Sterzik, M. F. 2011, A\&A, 533, A54
Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, AJ, 131, 1163
Spezzi, L., Alcalá, J. M., Covino, E., et al. 2008, ApJ, 680, 1295
Tambovtseva, L. V., Grinin, V. P. \& Weigelt, G. 2014, A\&A, 562, A104
Taylor, M. B. 2005, Astronomical Data Analysis Software and Systems XIV, 347, 29
Testi, L., Palla, F., \& Natta, A. 1999, A\&A, 342, 515
Thé, P. S., de Winter, D., \& Perez, M. R. 1994, A\&AS, 104, 315
Torres, C. A. O., Quast, G. R., da Silva, L., \& de La Reza, R. 2000, IAU Symposium, 200, 118
Vieira, S. L. A., Corradi, W. J. B., Alencar, S. H. P., et al. 2003, AJ, 126, 2971
Vieira, R. G., Gregorio-Hetem, J., Hetem, A., et al. 2011, A\&A, 526, A24
Vink, J. S., Drew, J. E., Harries, T. J., \& Oudmaijer, R. D. 2002, MNRAS, 337, 356
Waters, L. B. F. M., Cote, J., \& Lamers, H. J. G. L. M. 1987, A\&A, 185, 206
Watson, C. L., Henden, A. A., \& Price, A. 2006, Society for Astronomical Sciences Annual Symposium, 25, 47
Wheelwright, H. E., Oudmaijer, R. D., \& Goodwin, S. P. 2010, MNRAS, 401, 1199
Wheelwright, H. E., Vink, J. S., Oudmaijer, R. D., \& Drew, J. E. 2011, A\&A, 532, A28
Zhang, P., Yang, H. T., \& Liu, J. 2006, Ap\&SS, 305, 11
Zhang, Y., Tan, J. C., \& Hosokawa, T. 2014, ApJ, 788, 166
Zhang, Q., Claus, B., Watson, L., et al. 2017, ApJ, 837, 53
Zuckerman, B., Melis, C., Song, I., et al. 2008, ApJ, 683, 1085

Table 2. Main parameters of each Herbig Ae/Be star belonging to the high quality sample of 218 sources.

Name	$\begin{array}{r} \text { RA } \\ (\mathrm{h}: \mathrm{m}: \mathrm{s}) \end{array}$	$\begin{array}{r} \text { DEC } \\ \text { (deg:m:s) } \end{array}$	$\begin{array}{r} \hline \text { Parallax } \\ \text { (mas) } \end{array}$	Distance (pc)	$\begin{aligned} & \hline \mathrm{T}_{\mathrm{eff}} \\ & (\mathrm{~K}) \end{aligned}$	$\log (\mathrm{L})$ $\left(L_{\odot}\right)$	$\begin{array}{r} \mathrm{A}_{\mathrm{V}} \\ (\mathrm{mag}) \end{array}$	$\begin{array}{r} \mathrm{V} \\ (\mathrm{mag}) \end{array}$	Binary
AB Aur	04:55:45.9	+30:33:04	6.140 ± 0.057	$162.9_{-2.4}^{+2.6}$	9500_{-790}^{+750}	$1.61{ }_{-0.21}^{+0.19}$	$0.43_{-0.35}^{+0.28}$	7.32	Yes ${ }^{1}$
AK Sco	16:54:44.8	-36:53:19	7.113 ± 0.062	$140.6_{-2.0}^{+2.1}$	6250_{-250}^{+250}	$0.623_{-0.005}^{+0.028}$	$0.000_{-0.000}^{+0.050}$	8.90	Yes ${ }^{6}$
AS 310	18:33:21.2	-04:58:06	0.390 ± 0.046	2110_{-240}^{+350}	24500_{-5000}^{+4500}	$4.17_{-0.44}^{+0.39}$	$4.133_{-0.29}^{+0.26}$	12.49	-
AS 470	21:36:14.2	+57:21:31	0.137 ± 0.027	4040_{-440}^{+620}	8200_{-800}^{+1600}	$3.011_{-0.27}^{+0.47}$	$2.27_{-0.42}^{+0.62}$	12.44	-
AS 477	21:52:34.1	+47:13:44	1.290 ± 0.029	773_{-27}^{+30}	10000_{-500}^{+1700}	$2.22_{-0.12}^{+0.36}$	$1.19_{-0.12}^{+0.46}$	10.05	Yes ${ }^{4}$
BD+30 549	03:29:19.8	+31:24:57	3.384 ± 0.083	2955_{-11}^{+13}	115000_{-800}^{+1500}	$1.54_{-0.14}^{+0.25}$	$1.73_{-0.12}^{+0.24}$	10.51	-
BD+413731	20:24:15.7	+42:18:01	0.987 ± 0.035	1003_{-53}^{+64}	17000_{-1000}^{+1000}	$2.96{ }_{-0.31}^{+0.31}$	$1.06_{-0.50}^{+0.50}$	9.90	-
BF Ori	05:37:13.3	-06:35:01	2.570 ± 0.053	389_{-12}^{+14}	8970_{-200}^{+200}	$1.287_{-0.051}^{+0.060}$	$0.330_{-0.020}^{+0.030}$	9.82	-
BH Cep	22:01:42.9	+69:44:36	2.984 ± 0.018	$335.1_{-3.4}^{+3.4}$	6630_{-300}^{+210}	$0.76_{-0.14}^{+0.10}$	$0.83-0.024$	11.23	-
BO Cep	22:16:54.1	+70:03:45	2.670 ± 0.020	$374.5_{-4.5}^{+4.7}$	6650_{-100}^{+100}	$0.467_{-0.056}^{+0.088}$	$0.12_{-0.12}^{+0.20}$	11.52	-
CO Ori	05:27:38.3	+11:25:39	2.474 ± 0.042	404_{-11}^{+12}	6250_{-80}^{+150}	$1.50_{-0.09}^{+0.10}$	$2.14_{-0.19}^{+0.20}$	11.13	Yes ${ }^{4}$
CPM 25	06:23:56.3	+14:30:28	0.293 ± 0.066	2130_{-290}^{+470}	19500_{-3000}^{+5000}	$2.85{ }_{-0.39}^{+0.51}$	$3.833_{-0.23}^{+0.29}$	14.94	-
CQ Tau	05:35:58.5	+24:44:54	6.131 ± 0.082	$163.1{ }_{-3.5}^{+3.7}$	6750_{-200}^{+370}	$0.87_{-0.12}^{+0.18}$	$0.41_{-0.28}^{+0.42}$	8.98	Yes ${ }^{5}$
DG Cir	15:03:23.8	-63:22:59	1.191 ± 0.042	833_{-43}^{+52}	11000_{-3000}^{+3000}	$1.58{ }_{-0.45}^{+0.13}$	$3.944_{-0.54}^{+0.13}$	14.75	-
GSC 1876-0892	06:07:15.4	+29:57:55	0.154 ± 0.046	3000_{-390}^{+580}	19500_{-3000}^{+5000}	$3.85{ }_{-0.38}^{+0.49}$	$4.64_{-0.23}^{+0.29}$	14.00	-
GSC 3975-0579	21:38:08.5	+57:26:48	1.055 ± 0.029	942_{-39}^{+46}	8900_{-380}^{+600}	$1.53_{-0.13}^{+0.23}$	$0.78_{-0.17}^{+0.35}$	11.59	-
GSC 6546-3156	07:24:17.5	-26:16:05	0.701 ± 0.023	1409_{-68}^{+82}	9800_{-300}^{+900}	$1.38{ }_{-0.11}^{+0.26}$	$1.922_{-0.12}^{+0.34}$	14.13	-
GSC 8143-1225	07:59:11.6	-50:22:47	2.588 ± 0.021	$386.3_{-5.3}^{+5.3}$	6750_{-100}^{+250}	$0.47{ }_{-0.09}^{+0.13}$	$0.89_{-0.20}^{+0.29}$	12.35	-
GSC 8581-2002	08:44:23.6	-59:56:58	1.792 ± 0.02	5588_{-11}^{+12}	9750_{-250}^{+250}	$1.243_{-0.038}^{+0.055}$	$0.940_{-0.000}^{+0.040}$	11.48	-
GSC 8645-1401	12:17:47.5	-59:43:59	0.538 ± 0.030	1780_{-130}^{+170}	7000_{-250}^{+250}	$2.17_{-0.18}^{+0.18}$	$2.588_{-0.29}^{+0.25}$	13.08	-
GSC 8994-3902	13:19:04.0	-62:34:10	0.346 ± 0.037	2390_{-250}^{+370}	19500_{-3000}^{+5000}	$3.70_{-0.35}^{+0.46}$	$1.51_{-0.23}^{+0.29}$	10.73	-
HBC 217	06:40:42.2	+09:33:37	1.432 ± 0.040	6966_{-30}^{+35}	6250_{-80}^{+150}	$0.79_{-0.06}^{+0.12}$	$0.06_{-0.06}^{+0.20}$	12.00	-
HBC 222	06:40:51.2	+09:44:46	1.411 ± 0.035	706_{-27}^{+31}	6250_{-80}^{+150}	$0.82_{-0.08}^{+0.12}$	$0.11_{-0.11}^{+0.20}$	12.01	-
HBC 334	02:16:30.7	+55:23:00	0.535 ± 0.032	1770_{-140}^{+180}	16500_{-800}^{+3000}	$2.18_{-0.19}^{+0.35}$	$2.37_{-0.15}^{+0.23}$	14.32	-
HBC 442	05:34:14.2	-05:36:54	2.592 ± 0.039	386_{-9}^{+10}	6170_{-160}^{+80}	$0.983_{-0.046}^{+0.093}$	$0.07_{-0.07}^{+0.19}$	10.27	-
HBC 7	00:43:25.3	+61:38:23	0.338 ± 0.019	2760_{-190}^{+250}	19500_{-3000}^{+5000}	$3.87{ }_{-0.32}^{+0.42}$	$4.53_{-0.23}^{+0.29}$	13.65	-
HBC 705	20:51:02.7	+43:49:32	0.456 ± 0.027	2070_{-160}^{+210}	19500_{-3000}^{+5000}	$3.711_{-0.33}^{+0.42}$	$5.48_{-0.23}^{+0.29}$	14.37	-
HD 100453	11:33:05.5	-54:19:29	9.597 ± 0.039	$104.20_{-0.69}^{+0.70}$	7250_{-250}^{+250}	$0.790_{-0.003}^{+0.024}$	$0.000_{-0.000}^{+0.050}$	7.78	Yes ${ }^{7}$
HD 100546	11:33:25.3	-70:11:41	9.089 ± 0.051	$110.0_{-1.0}^{+1.0}$	9750_{-500}^{+500}	$1.371_{-0.046}^{+0.069}$	$0.000_{-0.000}^{+0.050}$	6.69	-
HD 101412	11:39:44.4	-60:10:28	2.431 ± 0.028	$411.3_{-7.6}^{+8.1}$	9750_{-250}^{+250}	$1.581_{-0.036}^{+0.049}$	$0.210_{-0.000}^{+0.030}$	9.24	Yes ${ }^{5}$
HD 104237	12:00:04.9	-78:11:35	9.226 ± 0.058	$108.4_{-1.1}^{+1.1}$	8000_{-250}^{+250}	$1.329_{-0.011}^{+0.035}$	$0.000_{-0.000}^{+0.050}$	6.52	Yes ${ }^{8}$
HD 114981	13:14:40.7	-38:39:06	1.405 ± 0.062	705_{-44}^{+57}	16000_{-500}^{+500}	$3.24_{-0.09}^{+0.12}$	$0.000_{-0.000}^{+0.050}$	7.23	-
HD 130437	14:50:50.2	-60:17:10	0.574 ± 0.036	1650_{-130}^{+180}	24500_{-5000}^{+4500}	$4.31_{-0.40}^{+0.34}$	$2.611_{-0.29}^{+0.26}$	10.05	-
HD 132947	15:04:56.0	-63:07:53	2.618 ± 0.057	382_{-13}^{+15}	10250_{-250}^{+250}	$1.606_{-0.050}^{+0.073}$	$0.000_{-0.000}^{+0.050}$	8.91	-
HD 135344	15:15:48.9	-37:08:56	7.036 ± 0.090	$142.1_{-2.9}^{+3.1}$	6750_{-250}^{+250}	$1.119_{-0.013}^{+0.015}$	0.00	7.65	-

Name	$\begin{array}{r} \mathrm{RA} \\ (\mathrm{~h}: \mathrm{m}: \mathrm{s}) \end{array}$	$\begin{array}{r} \text { DEC } \\ \text { (deg:m:s) } \end{array}$	$\begin{array}{r} \hline \text { Parallax } \\ \text { (mas) } \end{array}$	Distance (pc)	$\mathrm{T}_{\text {eff }}$ (K)	$\begin{array}{r} \hline \log (\mathrm{L}) \\ \left(L_{\odot}\right) \end{array}$	$\begin{array}{r} \mathrm{A}_{\mathrm{V}} \\ (\mathrm{mag}) \end{array}$	$\begin{array}{r} \mathrm{V} \\ (\mathrm{mag}) \end{array}$	Binary
HD 135344B	15:15:48.4	-37:09:16	7.365 ± 0.077	$135.8_{-2.3}^{+2.4}$	6380_{-120}^{+120}	$0.786_{-0.035}^{+0.033}$	$0.230_{-0.060}^{+0.050}$	8.63	Yes ${ }^{9}$
HD 139614	15:40:46.4	-42:29:54	7.424 ± 0.053	$134.7_{-1.6}^{+1.6}$	7750_{-250}^{+250}	$0.773_{-0.010}^{+0.032}$	$0.000_{-0.000}^{+0.050}$	8.40	-
HD 141569	15:49:57.7	-03:55:17	9.039 ± 0.044	$110.63_{-0.88}^{+0.91}$	9750_{-250}^{+250}	$1.216_{-0.027}^{+0.032}$	$0.010_{-0.000}^{+0.010}$	7.10	Yes ${ }^{4}$
HD 141926	15:54:21.8	-55:19:44	0.717 ± 0.044	1340_{-110}^{+150}	28000_{-1500}^{+1500}	$4.74_{-0.14}^{+0.15}$	$2.400_{-0.040}^{+0.030}$	8.64	Yes ${ }^{10}$
HD 142527	15:56:41.9	-42:19:24	6.356 ± 0.047	$157.3_{-1.9}^{+2.0}$	6500_{-250}^{+250}	$0.963_{-0.005}^{+0.026}$	$0.000_{-0.000}^{+0.050}$	8.27	Yes ${ }^{11}$
HD 142666	15:56:40.0	-22:01:40	6.744 ± 0.053	$148.3_{-1.9}^{+2.0}$	7500_{-250}^{+250}	$0.939_{-0.045}^{+0.043}$	$0.500_{-0.090}^{+0.080}$	8.67	-
HD 143006	15:58:36.9	-22:57:16	6.02 ± 0.15	$166.1_{-6.2}^{+7.1}$	$5430{ }_{-80}^{+38}$	$0.46_{-0.12}^{+0.09}$	$0.31_{-0.25}^{+0.12}$	10.10	-
HD 144432	16:06:57.9	-27:43:10	6.437 ± 0.058	$155.4_{-2.2}^{+2.4}$	7500_{-250}^{+250}	$0.971_{-0.011}^{+0.038}$	$0.000_{-0.000}^{+0.060}$	8.17	Yes ${ }^{4}$
HD 149914	16:38:28.6	-18:13:14	6.296 ± 0.080	$158.8_{-3.2}^{+3.5}$	10250_{-600}^{+850}	$2.09_{-0.12}^{+0.14}$	$0.95_{-0.14}^{+0.14}$	6.75	-
HD 150193	16:40:17.9	-23:53:45	6.632 ± 0.070	$150.8_{-2.5}^{+2.7}$	9000_{-250}^{+250}	$1.367_{-0.044}^{+0.039}$	$1.550_{-0.040}^{+0.020}$	8.80	Yes ${ }^{4}$
HD 155448	17:12:58.8	-32:14:34	1.024 ± 0.058	$950{ }_{-70}^{+100}$	10700_{-900}^{+800}	$2.74_{-0.28}^{+0.20}$	$0.47_{-0.34}^{+0.12}$	8.64	Yes ${ }^{12}$
HD 158643	17:31:25.0	-23:57:46	8.15 ± 0.30	$122.8_{-6.7}^{+8.2}$	9800_{-300}^{+900}	$2.22_{-0.07}^{+0.26}$	$0.00_{-0.00}^{+0.34}$	4.81	-
HD 163296	17:56:21.3	-21:57:22	9.85 ± 0.11	$101.5_{-1.9}^{+2.0}$	9250_{-250}^{+250}	$1.199_{-0.032}^{+0.055}$	$0.000_{-0.000}^{+0.050}$	6.85	-
HD 169142	18:24:29.8	-29:46:50	8.775 ± 0.064	$114.0_{-13}^{+1.4}$	10700_{-900}^{+800}	$1.31_{-0.22}^{+0.12}$	$1.02_{-0.34}^{+0.12}$	8.16	-
HD 17081	02:44:07.3	-13:51:32	9.38 ± 0.37	$106.7_{-6.3}^{+7.9}$	13000_{-1500}^{+1000}	$2.588_{-0.17}^{+0.19}$	$0.00_{-0.00}^{+0.14}$	4.24	-
HD 174571	18:50:47.2	+08:42:10	0.879 ± 0.059	1100_{-90}^{+130}	19500_{-3000}^{+5000}	$4.233_{-0.34}^{+0.43}$	$2.50_{-0.23}^{+0.29}$	8.70	-
HD 176386	19:01:38.9	-36:53:27	6.281 ± 0.061	$159.2_{-2.5}^{+2.6}$	10700_{-900}^{+800}	$1.58{ }_{-0.22}^{+0.12}$	$0.38_{-0.34}^{+0.12}$	7.56	Yes ${ }^{13}$
HD 179218	19:11:11.3	+15:47:15	3.759 ± 0.047	$266.0_{-5.2}^{+5.6}$	9500_{-200}^{+200}	$2.05_{-0.14}^{+0.09}$	$0.53_{-0.26}^{+0.12}$	7.38	Yes ${ }^{2}$
HD 199603	20:58:41.8	-14:29:00	11.20 ± 0.10	$89.3_{-1.3}^{+1.4}$	7380_{-130}^{+220}	$1.391_{-0.012}^{+0.036}$	$0.000_{-0.000}^{+0.059}$	5.96	Yes ${ }^{14}$
HD 200775	21:01:36.9	+68:09:48	2.771 ± 0.045	$361{ }_{-9}^{+10}$	16500_{-800}^{+3000}	$3.07{ }_{-0.14}^{+0.29}$	$1.05_{-0.15}^{+0.23}$	7.33	Yes ${ }^{4}$
HD 235495	21:21:27.5	+50:59:48	1.907 ± 0.032	524_{-14}^{+15}	9800_{-300}^{+900}	$1.51_{-0.08}^{+0.23}$	$0.09_{-0.09}^{+0.34}$	9.82	-
HD 244314	05:30:19.0	+11:20:20	2.313 ± 0.059	432_{-17}^{+19}	8500_{-250}^{+250}	$1.153_{-0.063}^{+0.058}$	$0.100_{-0.050}^{+0.020}$	10.10	-
HD 244604	05:31:57.3	+11:17:41	2.374 ± 0.062	421_{-17}^{+19}	9000_{-250}^{+250}	$1.461_{-0.066}^{+0.057}$	$0.140_{-0.040}^{+0.000}$	9.38	-
HD 245185	05:35:09.6	+10:01:51	2.32 ± 0.11	429 ${ }_{-29}^{+37}$	10000_{-500}^{+500}	$1.29_{-0.10}^{+0.13}$	$0.000_{-0.000}^{+0.050}$	9.91	Yes ${ }^{2}$
HD 249879	05:58:55.8	+16:39:57	1.476 ± 0.078	669_{-49}^{+66}	11500_{-800}^{+1500}	$1.56_{-0.18}^{+0.29}$	$0.20_{-0.12}^{+0.24}$	10.69	-
HD 250550	06:02:00.0	+16:30:57	1.401 ± 0.098	$697{ }_{-64}^{+94}$	11000_{-500}^{+500}	$1.944_{-0.12}^{+0.17}$	$0.000_{-0.000}^{+0.050}$	9.54	-
HD 259431	06:33:05.2	+10:19:20	1.379 ± 0.047	721_{-37}^{+44}	14000^{+2100}	$2.97{ }_{-0.40}^{+0.27}$	$1.11_{-0.30}^{+0.21}$	8.72	Yes ${ }^{2}$
HD 287823	05:24:08.0	$+02: 27: 47$	2.784 ± 0.053	359_{-11}^{+12}	8380_{-120}^{+120}	$1.116_{-0.031}^{+0.053}$	$0.000_{-0.000}^{+0.050}$	9.68	Yes ${ }^{6}$
HD 288012	05:33:04.8	$+02: 28: 10$	2.524 ± 0.056	$396{ }_{-13}^{+15}$	9800_{-300}^{+900}	$1.66{ }_{-0.10}^{+0.24}$	$0.57_{-0.12}^{+0.34}$	9.32	-
HD 290380	05:23:31.0	-01:04:24	2.821 ± 0.048	354_{-9}^{+10}	6400_{-150}^{+150}	$0.84_{-0.04}^{+0.13}$	$0.06_{-0.06}^{+0.27}$	10.40	-
HD 290409	05:27:05.5	+00:25:08	2.191 ± 0.082	455_{-25}^{+31}	9750_{-500}^{+500}	$1.27_{-0.09}^{+0.12}$	$0.000_{-0.000}^{+0.050}$	10.02	Yes ${ }^{6}$
HD 290500	05:29:48.1	-00:23:43	2.277 ± 0.068	438_{-20}^{+24}	9500_{-500}^{+500}	$0.81_{-0.08}^{+0.11}$	$0.000_{-0.000}^{+0.050}$	11.04	-
HD 290764	05:38:05.3	-01:15:22	2.510 ± 0.063	3988_{-15}^{+18}	$7880{ }_{-380}^{+380}$	$1.178_{-0.091}^{+0.093}$	$0.16_{-0.14}^{+0.12}$	9.88	-
HD 290770	05:37:02.4	-01:37:21	2.502 ± 0.074	399_{-18}^{+21}	10500_{-250}^{+250}	$1.522_{-0.060}^{+0.085}$	$0.000_{-0.000}^{+0.050}$	9.27	-
HD 305298	10:33:05.0	-60:19:51	0.134 ± 0.027	4040_{-440}^{+630}	34000_{-1000}^{+1000}	$4.55_{-0.14}^{+0.15}$	$1.300_{-0.020}^{+0.000}$	10.86	-
HD 313571	18:01:07.2	-22:15:04	0.616 ± 0.077	1400_{-170}^{+280}	16500_{-800}^{+3000}	$3.47_{-0.23}^{+0.42}$	$1.80_{-0.15}^{+0.23}$	10.01	-

Name	$\begin{array}{r} \mathrm{RA} \\ (\mathrm{~h}: \mathrm{m}: \mathrm{s}) \end{array}$	DEC (deg:m:s)	$\begin{array}{r} \hline \hline \text { Parallax } \\ \text { (mas) } \end{array}$	Distance (pc)	$\begin{aligned} & \hline \hline \mathrm{T}_{\mathrm{eff}} \\ & (\mathrm{~K}) \end{aligned}$	$\log (\mathrm{L})$ $\left(L_{\odot}\right)$	$\begin{array}{r} \mathrm{A}_{\mathrm{V}} \\ (\mathrm{mag}) \end{array}$	$\begin{array}{r} \mathrm{V} \\ \text { (mag) } \end{array}$	Binary
HD 31648	04:58:46.3	+29:50:37	6.182 ± 0.076	$161.8_{-3.2}^{+3.4}$	8250_{-200}^{+200}	$1.27_{-0.05}^{+0.14}$	$0.06_{-0.06}^{+0.28}$	7.62	-
HD 319896	17:31:05.9	-35:08:29	0.716 ± 0.063	1300_{-130}^{+200}	15750_{-750}^{+750}	$3.19_{-0.21}^{+0.24}$	$2.38_{-0.17}^{+0.15}$	10.99	-
HD 323771	17:34:04.6	-39:23:41	0.908 ± 0.055	1070_{-90}^{+120}	15000_{-1000}^{+800}	$2.51_{-0.21}^{+0.20}$	$1.32_{-0.16}^{+0.17}$	11.11	-
HD 34282	05:16:00.5	-09:48:35	3.210 ± 0.047	$311.5_{-7.2}^{+7.9}$	9500_{-250}^{+250}	$0.980_{-0.039}^{+0.049}$	$0.010_{-0.000}^{+0.020}$	9.89	Yes ${ }^{2}$
HD 344261	19:21:53.5	+21:31:51	3.328 ± 0.036	$300.5_{-5.2}^{+5.6}$	7000_{-250}^{+120}	$0.72_{-0.13}^{+0.11}$	$0.39_{-0.29}^{+0.25}$	10.65	-
HD 34700	05:19:41.4	+05:38:43	2.805 ± 0.048	356_{-11}^{+11}	5900_{-100}^{+110}	$1.36{ }_{-0.02}^{+0.10}$	$0.00_{-0.00}^{+0.21}$	9.09	Yes ${ }^{15}$
HD 35187	05:24:01.2	+24:57:37	6.13 ± 0.10	$163.0_{-4.2}^{+4.6}$	9800_{-300}^{+900}	$1.455_{-0.24}^{+0.30}$	$0.81_{-0.50}^{+0.50}$	8.17	Yes ${ }^{4}$
HD 35929	05:27:42.8	-08:19:39	2.580 ± 0.052	387_{-12}^{+13}	7000_{-250}^{+250}	$1.789_{-0.023}^{+0.046}$	$0.000_{-0.000}^{+0.050}$	8.12	Yes ${ }^{2}$
HD 36112	05:30:27.5	$+25: 19: 57$	6.240 ± 0.067	$160.3_{-2.8}^{+2.9}$	7600_{-300}^{+220}	$1.04_{-0.08}^{+0.12}$	$0.15_{-0.15}^{+0.25}$	8.27	Yes ${ }^{5}$
HD 36408	05:32:14.1	+17:03:29	2.288 ± 0.098	435-27	11930_{-830}^{+830}	$3.13_{-0.22}^{+0.18}$	$0.38_{-0.24}^{+0.12}$	6.09	Yes ${ }^{16}$
HD 36917	05:34:47.0	-05:34:15	2.103 ± 0.072	$474{ }_{-24}^{+29}$	11200_{-1300}^{+1100}	$2.433_{-0.29}^{+0.24}$	$0.52_{-0.34}^{+0.24}$	8.03	-
HD 36982	05:35:09.8	-05:27:53	2.447 ± 0.064	408_{-16}^{+19}	20000_{-1000}^{+1000}	$2.833_{-0.15}^{+0.14}$	$0.82_{-0.16}^{+0.12}$	8.45	-
HD 37258	05:36:59.3	-06:09:16	2.751 ± 0.099	363_{-19}^{+24}	9750_{-500}^{+500}	$1.24_{-0.10}^{+0.12}$	$0.060_{-0.040}^{+0.050}$	9.67	Yes ${ }^{5}$
HD 37357	05:37:47.1	-06:42:30	1.27 ± 0.30	$650{ }_{-120}^{+280}$	9500_{-250}^{+250}	$2.04_{-0.20}^{+0.35}$	$0.000_{-0.000}^{+0.050}$	8.84	Yes ${ }^{2}$
HD 37371	05:38:09.9	-00:11:01	2.428 ± 0.062	411_{-16}^{+18}	10700_{-900}^{+800}	$2.455_{-0.24}^{+0.15}$	$0.83{ }_{-0.34}^{+0.12}$	7.90	-
HD 37490	05:39:11.1	+04:07:17	3.16 ± 0.36	312_{-43}^{+80}	16500_{-800}^{+3000}	$3.69_{-0.25}^{+0.46}$	$0.17_{-0.15}^{+0.23}$	4.59	Yes ${ }^{17}$
HD 37806	05:41:02.3	-02:43:01	2.335 ± 0.058	428_{-16}^{+19}	10500_{-700}^{+1000}	$2.17{ }_{-0.14}^{+0.19}$	$0.13_{-0.13}^{+0.19}$	7.94	Yes ${ }^{5}$
HD 38087	05:43:00.6	-02:18:45	2.95 ± 0.10	338_{-18}^{+22}	13600_{-800}^{+2900}	$2.19_{-0.22}^{+0.30}$	$0.46_{-0.18}^{+0.24}$	8.38	Yes ${ }^{18}$
HD 38120	05:43:11.9	-04:59:50	2.463 ± 0.081	405_{-20}^{+24}	10700_{-900}^{+800}	$1.72_{-0.20}^{+0.31}$	$0.21_{-0.21}^{+0.50}$	9.07	-
HD 39014	05:44:46.3	-65:44:08	22.68 ± 0.30	$44.1_{-0.9}^{+1.0}$	7830_{-220}^{+160}	$1.42_{-0.02}^{+0.12}$	$0.00_{-0.00}^{+0.25}$	4.36	-
HD 41511	06:04:59.1	-16:29:04	4.50 ± 0.17	222_{-13}^{+16}	8900_{-380}^{+600}	$2.833_{-0.14}^{+0.24}$	$0.51_{-0.17}^{+0.35}$	4.93	Yes ${ }^{19}$
HD 45677	06:28:17.4	-13:03:11	1.603 ± 0.058	620_{-31}^{+41}	16500_{-800}^{+3000}	$2.888_{-0.17}^{+0.32}$	$0.57_{-0.15}^{+0.23}$	8.50	Yes ${ }^{1}$
HD 46060	06:30:49.8	-09:39:15	1.049 ± 0.058	930_{-70}^{+100}	21000_{-4200}^{+3400}	$3.89_{-0.38}^{+0.33}$	$1.79_{-0.22}^{+0.25}$	8.64	-
HD 50083	06:51:45.8	+05:05:04	0.897 ± 0.046	1090_{-80}^{+100}	16500_{-800}^{+3000}	$4.04_{-0.18}^{+0.34}$	$0.68_{-0.15}^{+0.23}$	6.91	-
HD 50138	06:51:33.4	-06:57:59	2.630 ± 0.064	3800_{-14}^{+16}	9450_{-450}^{+450}	$2.46_{-0.09}^{+0.13}$	$0.03_{-0.03}^{+0.12}$	6.67	Yes ${ }^{5}$
HD 56895B	07:18:31.8	-11:11:34	6.051 ± 0.049	$165.3_{-2.1}^{+2.2}$	7000_{-250}^{+250}	$0.97{ }_{-0.04}^{+0.11}$	$0.08_{-0.08}^{+0.25}$	8.42	-
HD 58647	07:25:56.1	-14:10:44	3.139 ± 0.043	$318.5_{-6.8}^{+7.4}$	10500_{-200}^{+200}	$2.44_{-0.09}^{+0.11}$	$0.37_{-0.12}^{+0.19}$	6.85	Yes ${ }^{1}$
HD 59319	07:28:36.8	-21:57:49	1.489 ± 0.049	668_{-39}^{+39}	12500_{-500}^{+500}	$2.51_{-0.08}^{+0.11}$	$0.000_{-0.000}^{+0.050}$	8.31	-
HD 68695	08:11:44.6	-44:05:09	2.526 ± 0.037	$396{ }_{-9}^{+10}$	9250_{-250}^{+250}	$1.193_{-0.036}^{+0.060}$	$0.000_{-0.000}^{+0.050}$	9.82	-
HD 76534	08:55:08.7	-43:28:00	1.089 ± 0.037	911_{-46}^{+55}	19000_{-500}^{+500}	$3.549_{-0}^{+0.087}$	$0.620_{-0.010}^{+0.020}$	8.07	Yes ${ }^{4}$
HD 85567	09:50:28.5	-60:58:03	0.971 ± 0.028	1023_{-45}^{+53}	13000_{-500}^{+500}	$3.199_{-0.08}^{+0.10}$	$0.890_{-0.020}^{+0.030}$	8.51	Yes ${ }^{1}$
HD 87403	10:02:51.4	-59:16:55	0.465 ± 0.043	1910_{-190}^{+280}	10000_{-250}^{+250}	$2.84_{-0.11}^{+0.16}$	$0.000_{-0.000}^{+0.050}$	9.26	-
HD 87643	10:04:30.3	-58:39:52	0.01 ± 0.12	2010_{-350}^{+570}	19500_{-3000}^{+5000}	$4.60_{-0.53}^{+0.64}$	$1.90_{-0.50}^{+0.50}$	8.51	Yes ${ }^{30}$
HD 94509	10:53:27.2	-58:25:24	0.511 ± 0.034	1830_{-150}^{+210}	11500_{-1000}^{+1000}	$2.99_{-0.15}^{+0.19}$	$0.000_{-0.000}^{+0.050}$	9.12	-
HD 95881	11:01:57.6	-71:30:48	0.844 ± 0.033	1168_{-66}^{+82}	10000_{-250}^{+250}	$2.85{ }_{-0.07}^{+0.10}$	$0.000_{-0.000}^{+0.050}$	8.19	-
HD 96042	11:03:40.5	-59:25:59	0.217 ± 0.034	3100_{-350}^{+510}	25500_{-1500}^{+1500}	$4.811_{-0.17}^{+0.20}$	$0.780_{-0.010}^{+0.030}$	8.47	-

Name	$\begin{array}{r} \mathrm{RA} \\ (\mathrm{~h}: \mathrm{m}: \mathrm{s}) \end{array}$	$\begin{array}{r} \text { DEC } \\ \text { (deg:m:s) } \end{array}$	$\begin{array}{r} \hline \text { Parallax } \\ \text { (mas) } \end{array}$	Distance (pc)	$\mathrm{T}_{\text {eff }}$ (K)	$\begin{array}{r} \hline \log (\mathrm{L}) \\ \left(L_{\odot}\right) \end{array}$	$\begin{array}{r} \mathrm{A}_{\mathrm{V}} \\ (\mathrm{mag}) \end{array}$	$\begin{array}{r} \mathrm{V} \\ (\mathrm{mag}) \end{array}$	Binary
HD 9672	01:34:37.9	-15:40:35	17.52 ± 0.10	$57.07_{-0.53}^{+0.55}$	8900_{-200}^{+200}	$1.174_{-0.020}^{+0.093}$	$0.00_{-0.00}^{+0.18}$	5.61	-
HD 97048	11:08:03.2	-77:39:17	5.411 ± 0.039	$184.8_{-2.1}^{+2.2}$	10500_{-500}^{+500}	$1.544_{-0.060}^{+0.072}$	$0.900_{-0.020}^{+0.050}$	8.44	-
HD 98922	11:22:31.7	-53:22:11	1.448 ± 0.034	689_{-25}^{+28}	10500_{-250}^{+250}	$3.032_{-0.052}^{+0.059}$	$0.090_{-0.000}^{+0.010}$	6.77	Yes ${ }^{1}$
HR 5999	16:08:34.3	-39:06:19	6.207 ± 0.070	$161.1_{-2.9}^{+3.1}$	8500_{-250}^{+250}	$1.717_{-0.041}^{+0.048}$	$0.330_{-0.040}^{+0.050}$	6.78	Yes ${ }^{3}$
HT CMa	07:02:42.5	-11:26:12	0.879 ± 0.036	1121_{-66}^{+83}	10500_{-500}^{+500}	$1.47_{-0.10}^{+0.12}$	$0.230_{-0.020}^{+0.050}$	11.87	-
HU CMa	07:04:06.7	-11:26:08	0.834 ± 0.039	1170_{-80}^{+100}	13000_{-250}^{+250}	$2.06_{-0.08}^{+0.10}$	$0.800_{-0.010}^{+0.020}$	11.55	-
Hen 3-1121	15:58:09.6	-53:51:18	0.310 ± 0.098	1750_{-280}^{+460}	26800_{-4800}^{+5100}	$3.9{ }_{-1.3}^{+1.3}$	$4.1_{-2.3}^{+2.3}$	13.00	-
Hen 3-1121S	15:58:09.7	-53:51:35	0.55 ± 0.17	$1150{ }_{-210}^{+390}$	29000_{-4500}^{+3900}	$4.12_{-0.43}^{+0.44}$	$3.48{ }_{-0.26}^{+0.18}$	11.02	-
Hen 3-1191	16:27:15.1	-48:39:27	0.487 ± 0.069	1660_{-210}^{+340}	29000_{-4500}^{+3900}	$3.49_{-0.37}^{+0.34}$	$3.84_{-0.26}^{+0.18}$	13.76	-
Hen 3-823	12:48:42.4	-59:54:35	0.805 ± 0.068	1170_{-120}^{+180}	16500_{-800}^{+3000}	$2.933_{-0.21}^{+0.39}$	$1.18_{-0.15}^{+0.23}$	10.35	-
Hen 3-847	13:01:17.8	-48:53:19	1.03 ± 0.23	780_{-140}^{+290}	14000_{-500}^{+500}	$2.07{ }_{-0.22}^{+0.32}$	$0.570_{-0.030}^{+0.010}$	10.61	-
Hen 3-938	13:52:42.8	-63:32:49	0.118 ± 0.032	3850_{-450}^{+640}	32900_{-3900}^{+2000}	$5.03_{-0.29}^{+0.25}$	$5.24_{-0.14}^{+0.14}$	13.40	-
IL Cep	22:53:15.6	+62:08:45	1.238 ± 0.027	805_{-27}^{+31}	16500_{-800}^{+3000}	$3.86{ }_{-0.15}^{+0.29}$	$3.16_{-0.15}^{+0.23}$	9.21	Yes ${ }^{2}$
IP Per	03:40:47.0	+32:31:54	3.250 ± 0.078	308_{-11}^{+13}	7990_{-380}^{+340}	$0.89_{-0.18}^{+0.13}$	$0.52_{-0.37}^{+0.22}$	10.42	-
KK Oph	17:10:08.1	-27:15:19	4.52 ± 0.14	221_{-10}^{+12}	8500_{-500}^{+500}	$0.71_{-0.11}^{+0.11}$	$2.70_{-0.15}^{+0.10}$	12.36	Yes ${ }^{3}$
LKHa 260	18:19:09.4	-13:50:41	0.771 ± 0.056	1230_{-110}^{+160}	14000_{-1000}^{+1000}	$2.09_{-0.23}^{+0.24}$	$3.20_{-0.18}^{+0.16}$	14.16	-
LKHa 338	06:10:47.1	-06:12:51	1.119 ± 0.044	885_{-50}^{+63}	10700_{-900}^{+800}	$1.133_{-0.26}^{+0.17}$	$2.60_{-0.34}^{+0.12}$	14.63	-
LkHa 208	06:07:49.5	+18:39:26	1.49 ± 0.20	630_{-90}^{+170}	7830_{-580}^{+500}	$1.04_{-0.28}^{+0.35}$	$0.36{ }_{-0.36}^{+0.34}$	11.44	Yes ${ }^{3}$
LkHa 215	06:32:41.8	+10:09:34	1.395 ± 0.045	713_{-34}^{+41}	14000_{-1000}^{+1000}	$2.57{ }_{-0.19}^{+0.18}$	$2.02_{-0.18}^{+0.16}$	10.60	Yes ${ }^{2}$
LkHa 257	21:54:18.8	$+47: 12: 10$	1.258 ± 0.016	794_{-16}^{+18}	15000_{-1000}^{+800}	$1.91_{-0.15}^{+0.13}$	$2.655_{-0.16}^{+0.17}$	13.29	-
LkHa 259	23:58:41.6	+66:26:13	1.319 ± 0.033	755_{-29}^{+34}	7380_{-130}^{+220}	$1.16_{-0.13}^{+0.09}$	$4.05_{-0.24}^{+0.14}$	15.20	-
LkHa 324	21:03:54.2	+50:15:10	1.651 ± 0.025	605_{-14}^{+16}	11500_{-800}^{+1500}	$2.08_{-0.13}^{+0.23}$	$3.64{ }_{-0.12}^{+0.24}$	12.63	-
LkHa 339	06:10:57.8	-06:14:40	1.163 ± 0.026	857_{-29}^{+33}	10500_{-250}^{+250}	$1.922_{-0.055}^{+0.058}$	$3.540_{-0.010}^{+0.010}$	13.47	-
MQ Cas	00:09:37.6	+58:13:11	1.217 ± 0.089	800_{-80}^{+110}	9800 ${ }_{-300}^{+900}$	$1.10_{-0.16}^{+0.32}$	$0.64_{-0.12}^{+0.34}$	12.31	-
MWC 1021	20:29:26.9	+41:40:44	0.507 ± 0.066	1640_{-200}^{+320}	19800_{-9200}^{+9200}	$5.49_{-0.87}^{+0.77}$	$8.89_{-0.34}^{+0.60}$	12.85	-
MWC 1080	23:17:25.6	+60:50:43	0.729 ± 0.092	1200_{-150}^{+260}	29000_{-4500}^{+3900}	$4.52_{-0.37}^{+0.37}$	$5.03_{-0.26}^{+0.18}$	11.61	Yes ${ }^{1}$
MWC 137	06:18:45.5	+15:16:52	0.110 ± 0.055	2910_{-400}^{+600}	29000_{-4500}^{+3900}	$4.94_{-0.38}^{+0.37}$	$4.633_{-0.26}^{+0.18}$	12.10	-
MWC 297	18:27:39.5	-03:49:52	2.663 ± 0.085	375_{-18}^{+22}	24500_{-1500}^{+1500}	$4.59_{-0.12}^{+0.12}$	$8.470_{-0.030}^{+0.040}$	12.03	Yes ${ }^{2}$
MWC 342	20:23:03.6	+39:29:50	0.536 ± 0.024	1810_{-110}^{+140}	26000_{-4000}^{+5900}	$4.89_{-0.34}^{+0.35}$	$4.25_{-0.33}^{+0.23}$	10.56	-
MWC 593	17:49:10.2	-24:14:21	0.682 ± 0.064	1340_{-140}^{+220}	15750_{-750}^{+750}	$3.588_{-0.21}^{+0.25}$	$2.31_{-0.17}^{+0.15}$	10.03	-
MWC 655	22:38:31.8	+55:50:05	0.424 ± 0.029	2170_{-180}^{+250}	24500_{-5000}^{+4500}	$4.12_{-0.40}^{+0.36}$	$0.94_{-0.29}^{+0.26}$	9.39	-
MWC 657	22:42:41.8	+60:24:01	0.265 ± 0.023	3160_{-290}^{+400}	19800_{-9200}^{+9200}	$4.62_{-0.83}^{+0.72}$	$5.03_{-0.34}^{+0.60}$	12.60	Yes ${ }^{32}$
MWC 878	17:24:44.7	-38:43:51	0.486 ± 0.053	1770_{-200}^{+300}	24500_{-5000}^{+4500}	$4.32_{-0.44}^{+0.38}$	$3.06{ }_{-0.29}^{+0.26}$	10.62	-
MWC 953	18:43:28.4	-03:46:17	0.493 ± 0.058	1720_{-200}^{+310}	19500_{-3000}^{+5000}	$4.21_{-0.37}^{+0.48}$	$3.62_{-0.23}^{+0.29}$	10.84	-
NSV 2968	06:26:53.9	-10:15:35	0.942 ± 0.062	1030_{-90}^{+120}	29000_{-4500}^{+3900}	$3.62_{-0.33}^{+0.28}$	$5.888_{-0.26}^{+0.18}$	14.43	-
NV Ori	05:35:31.4	-05:33:09	2.585 ± 0.057	387_{-13}^{+15}	6750_{-200}^{+250}	$1.19_{-0.08}^{+0.15}$	$0.13_{-0.13}^{+0.29}$	9.78	-

Name	$\begin{array}{r} \text { RA } \\ \text { (h:m:s) } \end{array}$	DEC (deg:m:s)	$\begin{array}{r} \hline \hline \text { Parallax } \\ \text { (mas) } \end{array}$	Distance (pc)	$\begin{aligned} & \hline \hline \mathrm{T}_{\mathrm{eff}} \\ & (\mathrm{~K}) \end{aligned}$	$\log (\mathrm{L})$ $\left(L_{\odot}\right)$	$\begin{array}{r} \mathrm{A}_{\mathrm{V}} \\ (\mathrm{mag}) \end{array}$	$\begin{array}{r} \mathrm{V} \\ \text { (mag) } \end{array}$	Binary
PDS 002	01:17:43.5	-52:33:31	2.411 ± 0.027	414.6 ${ }_{-7.3}^{+7.8}$	6750_{-100}^{+250}	$0.79_{-0.01}^{+0.12}$	$0.00_{-0.00}^{+0.26}$	10.81	-
PDS 004	03:39:00.6	+29:41:46	2.505 ± 0.050	399_{-12}^{+14}	9800 ${ }_{-300}^{+900}$	$1.28_{-0.10}^{+0.24}$	$0.91_{-0.12}^{+0.34}$	10.63	-
PDS 021	06:02:14.9	-10:00:59	1.119 ± 0.037	887_{-44}^{+53}	15000_{-1500}^{+3500}	$2.58{ }_{-0.16}^{+0.18}$	$1.170_{-0.040}^{+0.060}$	10.38	-
PDS 022	06:03:37.1	-14:53:03	1.11 ± 0.10	850_{-90}^{+140}	9800 ${ }_{-300}^{+900}$	$1.82_{-0.17}^{+0.34}$	$0.20_{-0.12}^{+0.34}$	10.23	-
PDS 025	06:54:27.9	-25:02:16	1.308 ± 0.019	763_{-18}^{+19}	8150_{-160}^{+180}	$0.60_{-0.09}^{+0.10}$	$1.44_{-0.16}^{+0.19}$	14.03	-
PDS 123	05:50:54.8	$+20: 14: 48$	0.649 ± 0.035	$1490{ }_{-110}^{+140}$	19800 ${ }_{-9200}^{+9200}$	$2.80_{-0.82}^{+0.69}$	$2.644_{-0.34}^{+0.60}$	13.11	-
PDS 124	06:06:58.5	-05:55:07	1.160 ± 0.048	853_{-51}^{+64}	10250_{-250}^{+250}	$1.38_{-0.07}^{+0.10}$	$1.230_{-0.000}^{+0.030}$	12.44	-
PDS 126	06:13:37.3	-06:25:02	1.173 ± 0.040	847_{-42}^{+51}	7830_{-220}^{+160}	$1.37{ }_{-0.14}^{+0.15}$	$0.90_{-0.25}^{+0.25}$	11.78	-
PDS 129	06:31:03.6	+10:01:13	1.447 ± 0.069	684_{-46}^{+60}	6550_{-150}^{+100}	$0.96_{-0.16}^{+0.15}$	$0.67{ }_{-0.27}^{+0.20}$	12.15	-
PDS 130	06:49:58.6	-07:38:52	0.754 ± 0.020	1316_{-53}^{+62}	10500_{-250}^{+250}	$1.734_{-0.057}^{+0.064}$	$2.070_{-0.000}^{+0.010}$	13.40	-
PDS 133	07:25:05.0	-25:45:50	0.668 ± 0.024	$1475{ }_{-76}^{+92}$	14000_{-2000}^{+2000}	$1.955_{-0.24}^{+0.23}$	$1.43_{-0.10}^{+0.09}$	13.13	-
PDS 134	07:32:26.6	-21:55:36	0.328 ± 0.033	$2550{ }_{-260}^{+370}$	14000_{-500}^{+500}	$2.72_{-0.13}^{+0.17}$	$1.220_{-0.020}^{+0.030}$	12.20	-
PDS 138	11:53:13.2	-62:05:21	0.043 ± 0.029	4630 ${ }_{-540}^{+750}$	29000_{-4500}^{+3900}	$5.14_{-0.36}^{+0.31}$	$5.29_{-0.26}^{+0.18}$	13.31	-
PDS 174	05:06:55.5	-03:21:13	2.514 ± 0.035	$398{ }_{-9}^{+10}$	17000_{-2000}^{+2000}	$1.96{ }_{-0.18}^{+0.16}$	$3.510_{-0.070}^{+0.070}$	12.84	-
PDS 211	06:10:17.3	+29:25:17	0.922 ± 0.031	1074_{-54}^{+65}	10700_{-900}^{+800}	$1.79_{-0.25}^{+0.16}$	$2.99_{-0.34}^{+0.12}$	13.79	-
PDS 24	06:48:41.7	-16:48:06	0.881 ± 0.019	1130_{-37}^{+42}	10500_{-500}^{+500}	$1.274_{-0.082}^{+0.088}$	$1.110_{-0.030}^{+0.040}$	13.26	-
PDS 241	07:08:38.8	-04:19:05	0.118 ± 0.054	$2890{ }_{-400}^{+600}$	26000_{-1500}^{+500}	$4.05_{-0.19}^{+0.27}$	$2.600_{-0.010}^{+0.040}$	12.06	-
PDS 27	07:19:35.9	-17:39:18	0.275 ± 0.044	$2550{ }_{-310}^{+460}$	17500_{-3500}^{+3500}	$4.15_{-0.39}^{+0.37}$	$5.03_{-0.13}^{+0.13}$	13.00	-
PDS 277	08:23:11.8	-39:07:01	2.891 ± 0.036	$345.8_{-6.8}^{+7.3}$	6750_{-100}^{+250}	$0.948_{-0.016}^{+0.074}$	$0.00_{-0.00}^{+0.15}$	10.02	-
PDS 286	09:06:00.0	-47:18:58	0.515 ± 0.034	1820_{-150}^{+210}	30000_{-3000}^{+3000}	$5.21_{-0.18}^{+0.20}$	$6.270_{-0.040}^{+0.050}$	12.15	-
PDS 290	09:26:11.1	-52:42:27	1.146 ± 0.027	869 ${ }_{-31}^{+36}$	13000_{-1500}^{+1000}	$1.60_{-0.24}^{+0.18}$	$3.31_{-0.24}^{+0.18}$	14.55	-
PDS 297	09:42:40.3	-56:15:34	0.610 ± 0.031	1590_{-110}^{+140}	10750_{-250}^{+250}	$2.12_{-0.16}^{+0.14}$	$1.211_{-0.19}^{+0.12}$	12.02	-
PDS 324	10:57:24.2	-62:53:13	0.307 ± 0.023	2880_{-240}^{+330}	24500_{-5000}^{+4500}	$3.43_{-0.42}^{+0.35}$	$3.57_{-0.29}^{+0.26}$	14.45	-
PDS 33	08:48:45.7	-40:48:21	1.046 ± 0.027	9511_{-37}^{+43}	9750_{-250}^{+250}	$1.193_{-0.054}^{+0.075}$	$0.520_{-0.000}^{+0.040}$	12.34	-
PDS 34	08:49:58.5	-45:53:06	0.457 ± 0.017	2130_{-110}^{+140}	19500_{-3000}^{+5000}	$2.87{ }_{-0.31}^{+0.39}$	$2.96_{-0.23}^{+0.29}$	14.04	-
PDS 344	11:40:32.8	-64:32:06	0.395 ± 0.016	2440_{-140}^{+170}	15250_{-500}^{+500}	$2.24_{-0.10}^{+0.09}$	$0.860_{-0.020}^{+0.010}$	13.15	-
PDS 361S	13:03:21.5	-62:13:26	0.266 ± 0.030	$2950{ }_{-300}^{+430}$	18500_{-1000}^{+1000}	$2.87{ }_{-0.35}^{+0.37}$	$1.20_{-0.50}^{+0.50}$	12.85	Yes ${ }^{27}$
PDS 37	10:10:00.3	-57:02:07	0.416 ± 0.056	1930_{-230}^{+360}	17500_{-3500}^{+1500}	$4.00_{-0.39}^{+0.37}$	$5.811_{-0.13}^{+0.13}$	13.54	-
PDS 389	15:14:47.0	-62:17:00	1.238 ± 0.033	804_{-32}^{+38}	8520_{-180}^{+380}	$1.955_{-0.15}^{+0.13}$	$4.84_{-0.28}^{+0.17}$	14.18	-
PDS 415N	16:18:37.2	-24:05:18	6.93 ± 0.13	$144.2_{-4.2}^{+4.7}$	6250_{-250}^{+250}	$0.44_{-0.12}^{+0.16}$	$1.48_{-0.25}^{+0.35}$	10.88	-
PDS 431	16:54:59.2	-43:21:50	0.531 ± 0.027	1810_{-120}^{+160}	10500_{-500}^{+500}	$1.888_{-0.11}^{+0.12}$	$1.760_{-0.030}^{+0.030}$	13.42	-
PDS 469	17:50:58.1	-14:16:12	0.864 ± 0.083	1080_{-120}^{+190}	9800_{-300}^{+900}	$1.600_{-0.17}^{+0.35}$	$1.73{ }_{-0.12}^{+0.34}$	12.80	-
PDS 477	18:00:30.3	-16:47:26	-0.19 ± 0.10	2470_{-410}^{+640}	24500_{-5000}^{+4500}	$3.611_{-0.50}^{+0.46}$	$4.28_{-0.29}^{+0.26}$	14.38	-
PDS 520	18:30:06.2	$+00: 42: 33$	2.60 ± 0.19	380_{-37}^{+56}	6750_{-100}^{+250}	$0.59_{-0.16}^{+0.23}$	$4.07_{-0.20}^{+0.29}$	15.17	-
PDS 543	18:48:00.7	+02:54:17	0.639 ± 0.063	1410_{-160}^{+240}	29000_{-4500}^{+3900}	$5.21_{-0.36}^{+0.32}$	$7.12_{-0.26}^{+0.18}$	12.40	-
PDS 69	13:57:43.9	-39:58:47	1.551 ± 0.044	643-33	15000_{-2000}^{+2000}	$2.70_{-0.21}^{+0.20}$	$1.600_{-0.070}^{+0.070}$	9.80	Yes ${ }^{23}$

Name	$\begin{array}{r} \text { RA } \\ (\mathrm{h}: \mathrm{m}: \mathrm{s}) \end{array}$	DEC (deg:m:s)	$\begin{array}{r} \hline \text { Parallax } \\ \text { (mas) } \end{array}$	Distance (pc)	$\mathrm{T}_{\text {eff }}$ (K)	$\log (\mathrm{L})$ $\left(L_{\odot}\right)$	$\begin{array}{r} \mathrm{A}_{\mathrm{V}} \\ (\mathrm{mag}) \end{array}$	$\begin{array}{r} \mathrm{V} \\ (\mathrm{mag}) \end{array}$	Binary
PX Vul	19:26:40.3	+23:53:51	1.581 ± 0.068	$627{ }_{-39}^{+50}$	6750_{-150}^{+310}	$1.36{ }_{-0.13}^{+0.18}$	$1.21_{-0.20}^{+0.29}$	11.51	-
RR Tau	05:39:30.5	+26:22:27	1.284 ± 0.046	$773{ }_{-41}^{+49}$	10000_{-200}^{+200}	$2.01_{-0.12}^{+0.19}$	$1.55_{-0.12}^{+0.28}$	10.92	Yes ${ }^{2}$
RY Ori	05:32:09.9	-02:49:47	2.713 ± 0.039	$368.5_{-8.3}^{+9.0}$	6250_{-80}^{+150}	$0.86_{-0.09}^{+0.10}$	$0.96{ }_{-0.19}^{+0.20}$	11.36	-
SAO 185668	17:43:55.6	-22:05:45	0.604 ± 0.061	$1480{ }_{-160}^{+250}$	16500_{-800}^{+3000}	$3.80_{-0.22}^{+0.40}$	$2.01_{-0.15}^{+0.23}$	9.53	-
SAO 220669	08:55:45.9	-44:25:14	1.066 ± 0.031	$932+47$	16000_{-1500}^{+1500}	$3.58{ }_{-0.18}^{+0.16}$	$1.89_{-0.10}^{+0.07}$	8.87	-
SV Cep	22:21:33.2	+73:40:27	2.904 ± 0.020	$344.3{ }_{-3.8}^{+4.0}$	10250_{-200}^{+200}	$1.073_{-0.080}^{+0.080}$	$0.96{ }_{-0.12}^{+0.12}$	10.97	Yes ${ }^{2}$
T Ori	05:35:50.5	-05:28:35	2.452 ± 0.044	408_{-11}^{+13}	9000_{-500}^{+500}	$1.56{ }_{-0.07}^{+0.10}$	$1.500_{-0.050}^{+0.080}$	10.43	Yes ${ }^{2}$
TY CrA	19:01:40.8	-36:52:34	7.33 ± 0.15	$136.5_{-4.2}^{+4.7}$	10700_{-900}^{+800}	$1.41_{-0.23}^{+0.14}$	$1.988_{-0.34}^{+0.12}$	9.26	Yes ${ }^{21}$
UX Ori	05:04:30.0	-03:47:14	3.077 ± 0.051	$324.9_{-8.4}^{+9.3}$	8500_{-250}^{+250}	$0.962_{-0.044}^{+0.064}$	$0.480_{-0.030}^{+0.070}$	10.34	Yes ${ }^{2}$
V1012 Ori	05:11:36.5	-02:22:48	2.586 ± 0.051	386_{-12}^{+13}	8500_{-250}^{+250}	$0.773_{-0.050}^{+0.048}$	$1.320_{-0.040}^{+0.020}$	12.04	-
V1295 Aql	20:03:02.5	+05:44:17	1.122 ± 0.067	870_{-70}^{+100}	9500_{-200}^{+200}	$2.90_{-0.20}^{+0.16}$	$0.40_{-0.26}^{+0.12}$	7.73	-
V1478 Cyg	20:32:45.5	$+40: 39: 37$	0.62 ± 0.10	1300_{-190}^{+320}	19800_{-9200}^{+9200}	$5.17{ }_{-0.89}^{+0.81}$	$8.911_{-0.34}^{+0.60}$	13.15	Yes ${ }^{33}$
V1493 Cyg	20:52:04.6	+44:37:30	0.828 ± 0.088	1100_{-130}^{+210}	8900_{-380}^{+600}	$2.155_{-0.30}^{+0.34}$	$5.755_{-0.17}^{+0.35}$	15.34	-
V1685 Cyg	20:20:28.2	$+41: 21: 51$	1.092 ± 0.031	910_{-39}^{+46}	19500_{-3000}^{+5000}	$3.800_{-0.29}^{+0.42}$	$3.755_{-0.20}^{+0.39}$	10.63	Yes ${ }^{4}$
V1686 Cyg	20:20:29.3	+41:21:28	0.78 ± 0.12	1080_{-160}^{+280}	6010_{-110}^{+160}	$1.53_{-0.22}^{+0.27}$	$1.855_{-0.24}^{+0.19}$	12.93	-
V1787 Ori	05:38:09.3	-06:49:17	2.555 ± 0.053	391_{-13}^{+14}	8150_{-160}^{+180}	$1.15{ }_{-0.09}^{+0.11}$	$4.08_{-0.16}^{+0.19}$	13.84	-
V1818 Ori	05:53:42.6	-10:24:01	1.412 ± 0.088	695_{-59}^{+82}	13000_{-1500}^{+1000}	$2.96{ }_{-0.29}^{+0.24}$	$3.72_{-0.24}^{+0.18}$	11.07	-
V1977 Cyg	20:47:37.5	$+43: 47: 25$	1.158 ± 0.030	860_{-34}^{+39}	11000_{-200}^{+200}	$2.48{ }_{-0.10}^{+0.11}$	$2.26{ }_{-0.12}^{+0.12}$	10.90	Yes ${ }^{21}$
V2019 Cyg	20:48:04.8	$+43: 47: 26$	1.182 ± 0.029	843_{-31}^{+36}	10700_{-900}^{+800}	$2.33_{-0.24}^{+0.15}$	$2.50_{-0.34}^{+0.12}$	11.42	-
V346 Ori	05:24:42.8	+01:43:48	2.728 ± 0.043	366_{-9}^{+10}	77500_{-250}^{+250}	$0.918_{-0.022}^{+0.045}$	$0.000_{-0.000}^{+0.050}$	10.21	-
V350 Ori	05:40:11.8	-09:42:11	2.55 ± 0.12	390_{-27}^{+35}	9000_{-250}^{+250}	$1.04_{-0.09}^{+0.10}$	$0.690_{-0.030}^{+0.020}$	10.82	Yes ${ }^{2}$
V351 Ori	05:44:18.8	+00:08:40	2.925 ± 0.045	$341.8_{-8.3}^{+9.1}$	7830_{-220}^{+160}	$1.40_{-0.03}^{+0.12}$	$0.03_{-0.03}^{+0.25}$	8.90	-
V361 Cep	21:42:50.2	+66:06:35	1.116 ± 0.025	893_{-31}^{+35}	15750_{-750}^{+750}	$3.06{ }_{-0.14}^{+0.15}$	$1.90_{-0.17}^{+0.15}$	10.03	-
V373 Cep	21:43:06.8	+66:06:54	1.081 ± 0.022	922_{-29}^{+33}	13000_{-1500}^{+1000}	$2.29_{-0.24}^{+0.18}$	$3.07_{-0.24}^{+0.18}$	12.73	Yes ${ }^{3}$
V374 Cep	23:05:07.5	+62:15:36	1.141 ± 0.030	872_{-35}^{+40}	15000_{-1000}^{+800}	$3.36{ }_{-0.17}^{+0.15}$	$3.00_{-0.16}^{+0.17}$	10.21	Yes ${ }^{2}$
V380 Ori	05:36:25.4	-06:42:58	2.04 ± 0.16	482_{-49}^{+76}	9750_{-750}^{+750}	$2.00_{-0.18}^{+0.21}$	$2.210_{-0.070}^{+0.050}$	10.53	Yes ${ }^{1}$
V388 Vel	08:42:17.3	-40:44:10	0.196 ± 0.061	2470_{-340}^{+540}	9500_{-600}^{+300}	$2.455_{-0.32}^{+0.24}$	$4.00_{-0.35}^{+0.12}$	14.69	-
V431 Sct	18:29:25.7	-06:04:37	0.634 ± 0.068	1400_{-160}^{+250}	22500_{-4500}^{+4500}	$3.86{ }_{-0.38}^{+0.46}$	$3.78{ }_{-0.16}^{+0.33}$	11.75	Yes ${ }^{21}$
V594 Cas	00:43:18.3	+61:54:40	1.755 ± 0.028	569_{-14}^{+16}	11500_{-800}^{+1500}	$2.13{ }_{-0.13}^{+0.24}$	$1.90_{-0.12}^{+0.24}$	10.61	-
V594 Cyg	21:20:23.4	+43:18:10	0.670 ± 0.091	1280_{-170}^{+280}	11500_{-800}^{+1500}	$3.51_{-0.23}^{+0.39}$	$5.97{ }_{-0.12}^{+0.24}$	12.99	-
V599 Ori	05:38:58.6	-07:16:46	2.436 ± 0.042	410_{-11}^{+12}	8000_{-250}^{+250}	$1.444_{-0.057}^{+0.057}$	$4.650_{-0.070}^{+0.060}$	13.76	-
V669 Cep	22:26:38.7	+61:13:32	0.990 ± 0.066	980_{-90}^{+120}	15000_{-1000}^{+800}	$2.60_{-0.21}^{+0.21}$	$3.05_{-0.16}^{+0.17}$	12.41	Yes ${ }^{24}$
V718 Sco	16:13:11.6	-22:29:07	6.556 ± 0.081	$152.5_{-30}^{+3.2}$	8000_{-250}^{+250}	$0.899_{-0.039}^{+0.046}$	$0.740_{-0.050}^{+0.060}$	9.10	Yes ${ }^{25}$
V921 Sco	16:59:06.8	-42:42:08	0.587 ± 0.054	1550_{-160}^{+240}	29000_{-4500}^{+3900}	$4.766_{-0.34}^{+0.33}$	$4.888_{-0.18}^{+0.18}$	11.41	Yes ${ }^{26}$
VV Ser	18:28:47.9	+00:08:40	2.381 ± 0.046	420_{-13}^{+14}	13800_{-200}^{+200}	$1.955_{-0.08}^{+0.10}$	$2.911_{-0.12}^{+0.12}$	11.82	-
VX Cas	00:31:30.7	+61:58:51	1.861 ± 0.037	537_{-16}^{+18}	10000_{-200}^{+200}	$1.21_{-0.10}^{+0.16}$	$0.81_{-0.12}^{+0.28}$	11.39	Yes ${ }^{2}$

Table 2. continued.

Name	RA $(\mathrm{h}: \mathrm{m}: \mathrm{s})$	DEC $(\mathrm{deg}: \mathrm{m}: \mathrm{s})$	Parallax (mas)	Distance (pc)	$\mathrm{T}_{\text {eff }}$ (K)	$\log (\mathrm{L})$ $\left(L_{\odot}\right)$	A_{V} (mag)	V (mag)
WRAY 15-1435	$16: 13: 06.7$	$-50: 23: 20$	0.467 ± 0.048	1860_{-200}^{+300}	24500_{-5000}^{+4500}	$3.68_{-0.44}^{+0.39}$	$3.56_{-0.09}^{+0.026}$	12.86
WW Vul	$19: 25: 58.8$	$+21: 12: 31$	1.984 ± 0.037	504_{-15}^{+16}	8970_{-200}^{+200}	$1.42_{-0.13}^{+0.13}$	$0.95_{-0.02}^{+0.22}$	10.64
XY Per A	$03: 49: 36.3$	$+38: 58: 55$	2.169 ± 0.089	459_{-27}^{+35}	9750_{-200}^{+200}	$2.00_{-0.12}^{+0.13}$	$1.47_{-0.12}^{+0.12}$	9.67

References. Atmospheric parameters $\mathrm{T}_{\mathrm{eff}}, \mathrm{A}_{\mathrm{V}}$ and V taken from the following sources in order of choice: Fairlamb et al. 2015; Montesinos et al. 2009; Hernández et al. 2004; Mendigutía et al. 2012; Carmona et al. 2010; Chen et al. 2016; Alecian et al. 2013; Sartori et al. 2010; Manoj et al. 2006; Hernández et al. 2005; Vieira et al. 2003; APASS Data Release 9 and the SIMBAD database. If not available they were derived as described in Sect. 2.2. See Sect. 3 for derivation of L, Mass and Age. The references for binarity are: (1) Baines et al. (2006); (2) Wheelwright et al. (2010); (3) Leinert et al. (1997); (4) Maheswar et al. (2002); (5) Wheelwright et al. (2011); (6) Alecian et al. (2013); (7) Hamaguchi et al. (2008); (8) Dunhill et al. (2015); (9) Coulson \& Walther (1995); (10) Liu et al. (2000); (11) Biller et al. (2012); (12) Schütz et al. (2011); (13) Boersma et al. (2009); (14) Malkov et al. (2006); (15) Arellano Ferro \& Giridhar (2003); (16) Kubát et al. (2010); (17) Morrell \& Levato (1991); (18) Lazareff et al. (2017); (19) Mayer et al. (2016); (20) Folsom et al. (2008); (21) Corporon \& Lagrange (1999); (22) Doering \& Meixner (2009); (23) Chelli et al. (1995); (24) Miroshnichenko et al. (2002); (25) Friedemann et al. (1996); (26) Kraus et al. (2012); (27) Torres et al. (2000); (28) Aspin (1998); (29) Connelley et al. (2008); (30) Millour et al. (2009); (31) Frasca et al. (2016); (32) Marston \& McCollum (2008); (33) Zhang et al. (2017).

Table 3. Other parameters of each Herbig Ae/Be star belonging to the high quality sample of 218 sources.

Name	Near IR excess $(1.24-3.4 \mu \mathrm{~m})$	Mid IR excess $(3.4-22 \mu \mathrm{~m})$	H α EW (A)	$\mathrm{H} \alpha$ line shape	V_{i}	Mass $\left(M_{\odot}\right)$	$\begin{array}{r} \text { Age } \\ \text { (Myr) } \\ \hline \end{array}$
AB Aur	$0.32_{-0.13}^{+0.25}$	$0.27_{-0.12}^{+0.25}$	-55.7 ± 4.5^{6}	P^{6}	0.21	$2.155_{-021}^{+0.36}$	$4.0_{-1.5}^{+1.4}$
AK Sco	$0.212_{-0.053}^{+0.035}$	$0.196_{-0.024}^{+0.016}$	-5.9 ± 1.1^{1}	d^{28}	12.47	$1.401_{-0.070}^{+0.070}$	$8.4_{-0.4}^{+1.7}$
AS 310	${ }_{-}^{-0.053}$	-0.024	-8.89 ± 0.38^{5}	d^{26}	-0.21	$11.9{ }_{-3.4}^{+4.8}$	$0.06_{-0.04}^{+0.54}$
AS 470	$0.031_{-0.031}^{+0.054}$	$\left(0.95_{-0.82}^{+0.73}\right) \cdot 10^{-2}$	-49.2 ± 4.0^{23}	-	1.22	$7.0_{-1.8}^{+2.8}$	$0.10_{-0.07}^{+0.20}$
AS 477	$0.19_{-0.11}^{+0.07}$	${ }_{0.162}^{-0.092}$	-38.8 ± 1.5^{22}	P^{22}	0.24	$3.3_{-0.4}^{+1.1}$	$1.25_{-0.73}^{+0.64}$
BD+30 549	$0.030_{-0.015}^{+0.013}$	$\left(1.63_{-0.67}^{+0.52}\right) \cdot 10^{-2}$	-	-	0.22	2.28 ${ }_{-0.19}^{+0.37}$	5_{-2}^{+15}
BD+41 3731	-0.015	$\left(0.24_{-0.24}^{+0.61}\right) \cdot 10^{-3}$	-	s^{8}	0.01	$5.0_{-0.7}^{+1.2}$	$0.5_{-0.3}^{+3.0}$
BF Ori	$0.113_{-0.012}^{+0.011}$	${ }_{0} 0.139_{-0.013}^{+0.012}$	-14.7 ± 1.5^{1}	d^{3}	9.25*	$1.807_{-0.090}^{+0.090}$	$6.38_{-0.46}^{+0.32}$
BH Cep	$0.17{ }_{-0.08}^{+0.14}$	$0.170_{-0.042}^{+0.077}$	-6.20 ± 0.19^{3}	d^{3}	11.09*	$1.37_{-0.10}^{+0.15}$	$10.6_{-3.1}^{+3.0}$
BO Cep	$0.121_{-0.055}^{+0.043}$	$0.072_{-0.015}^{+0.012}$	-7.50 ± 0.22^{3}	d^{3}	0.39*	$1.215_{-0.061}^{+0.061}$	$17.1_{-2.4}^{+0.9}$
CO Ori	$0.31_{-0.10}^{+0.12}$	$0.173_{-0.041}^{+0.049}$	-21.10 ± 0.63^{3}	s^{3}	-*	$2.60{ }_{-0.24}^{+0.20}$	$1.76_{-0.36}^{+0.62}$
CPM 25	$0.059_{-0.033}^{+0.053}$	$0.15_{-0.09}^{+0.13}$	-200 ± 10^{27}	d^{21}	-	$5.2_{-1.2}^{+2.2}$	$0.7_{-0.4}^{-5.7}$
CQ Tau	$0.20_{-0.13}^{+0.14}$	$0.37_{-0.14}^{+0.14}$	-4.80 ± 0.14^{3}	d^{3}	27.33*	$1.47_{-0.11}^{+0.19}$	$8.9_{-2.5}^{+2.8}$
DG Cir	$0.56_{-0.28}^{+0.92}$	$0.7_{-0.3}^{+1.1}$	-61.1 ± 1.6^{1}	P^{21}	18.42	$2.30_{-0.65}^{+0.60}$	4_{-3}^{+16}
GSC 1876-0892	$0.022_{-0.013}^{+0.021}$	$0.049_{-0.027}^{+0.043}$	-5.21 ± 0.25^{27}	d^{21}	0.98	$9.4_{-2.4}^{+5.2}$	$0.09_{-0.06}^{+0.13}$
GSC 3975-0579	$0.190_{-0.079}^{+0.056}$	$0.173_{-0.063}^{+0.044}$	-16.09 ± 0.34^{11}	-	0.04	$2.06_{-0.12}^{+0.37}$	$4.4_{-1.6}^{+0.7}$
GSC 6546-3156	$0.050_{-0.028}^{+0.016}$	$0.27_{-0.11}^{+0.05}$	-18.78 ± 0.45^{15}	s^{21}	-	$2.04_{-0.14}^{+0.29}$	6_{-2}^{+14}
GSC 8143-1225	$0.28_{-0.11}^{+0.11}$	$0.157_{-0.043}^{+0.038}$	-	-	49.58	$1.275_{-0.071}^{+0.064}$	$17.7_{-3.0}^{+2.3}$
GSC 8581-2002	$\left(4.45_{-0.57}^{+0.27}\right) \cdot 10^{-2}$	$\left(6.64_{-0.72}^{+0.41}\right) \cdot 10^{-3}$	-2.6 ± 1.4^{1}	-	-0.12	$1.880_{-0.094}^{+0.094}$	8_{-1}^{+12}
GSC 8645-1401	0.20 ${ }_{-0.08}^{+0.12}$	$0.197_{-0.047}^{+0.071}$	-14.42 ± 0.45^{15}	P^{21}	9.76	$4.04_{-0.56}^{+0.66}$	$0.56_{-0.23}^{+0.33}$
GSC 8994-3902	-	-	-	-	0.04	$8.4_{-2.0}^{+3.9}$	$0.12_{-0.08}^{+0.44}$
HBC 217	$0.146_{-0.068}^{+0.036}$	$0.162_{-0.035}^{+0.016}$	-14.55 ± 0.52^{5}	-	0.63	$1.51_{-0.08}^{+0.16}$	$7.3^{+0.7 .8}$
HBC 222	$0.165_{-0.071}^{+0.055}$	$0.120_{-0.026}^{+0.019}$	-5.451 ± 0.060^{5}	-	1.45	$1.53{ }_{-0.08}^{+0.14}$	$7.2_{-1.7}^{-0.9}$
HBC 334	$0.020_{-0.010}^{+0.009}$	$0.078_{-0.036}^{+0.027}$	-5.03 ± 0.01^{5}	-	0.18	$3.711_{-0.19}^{+0.49}$	$2.1_{-1.1}^{+4.3}$
HBC 442	$0.100_{-0.062}^{+0.040}$	$0.168_{-0.033}^{+0.019}$	-4.773 ± 0.065^{5}	P^{5}	2.93	$1.80_{-0.09}^{+0.25}$	$4.5_{-1.5}^{-0.2}$
HBC 7	$\left(0.20_{-0.20}^{+0.31}\right) \cdot 10^{-2}$	$\left(0.51_{-0.30}^{+0.50}\right) \cdot 10^{-3}$	-41.8 ± 2.1^{5}	-	-0.06	$9.5_{-2.1}^{+4.1}$	$0.09_{-0.06}^{+0.11}$
HBC 705	$\left(0.36_{-0.27}^{+0.46}\right) \cdot 10^{-2}$	$\left(0.65_{-0.38}^{+0.62}\right) \cdot 10^{-3}$	-27.1 ± 1.3^{5}	-	1.15	$8.5_{-1.8}^{+3.6}$	$0.12_{-0.08}^{+0.21}$
HD 100453	$0.177_{-0.042}^{+0.031}$	$0.309_{-0.045}^{+0.037}$	-5.0 ± 1.3^{1}	s^{31}	-0.17	$1.251_{-0.063}^{+0.063}$	$6.53_{-0.49}^{+0.45}$
HD 100546	$0.072_{-0.015}^{+0.011}$	$0.29_{-0.08}^{+0.10}$	-39.5 ± 1.6^{1}	s^{6}	-0.06*	$2.05_{-0.12}^{+0.10}$	$5.5_{-0.8}^{+1.4}$
HD 101412	$0.103_{-0.012}^{+0.009}$	$0.184_{-0.019}^{+0.015}$	-15.4 ± 1.7^{1}	d^{21}	-0.04	$2.10_{-0.11}^{+0.11}$	$4.37_{-0.32}^{+0.22}$
HD 104237	$0.154_{-0.032}^{+0.022}$	$0.151_{-0.032}^{+0.032}$	-27.5 ± 1.7^{1}	P^{4}	0.50	$1.849_{-0.092}^{+0.092}$	$5.48_{-0.40}^{+0.27}$
HD 114981	$\left(0.29_{-0.10}^{+0.04}\right) \cdot 10^{-2}$	$\left(3.22_{-0.69}^{+0.30}\right) \cdot 10^{-4}$	-13.24 ± 0.72^{1}	d^{21}	0.35	$6.09_{-0.34}^{+0.59}$	$0.277_{-0.068}^{+0.053}$
HD 130437	$\left(0.53_{-0.28}^{+0.78}\right) \cdot 10^{-2}$	$\left(0.09_{-0.04}^{+0.12}\right) \cdot 10^{-2}$	-	-	0.43	$13.4{ }_{-3.8}^{+4.6}$	$0.046_{-0.026}^{+0.077}$
HD 132947	-0.28	-0.04	-1.6 ± 1.2^{1}	-	-0.19	$2.22_{-0.11}^{+0.11}$	$4.05_{-0.20}^{+0.32}$
HD 135344	-	-	-10.03 ± 0.65^{6}	-	-	$1.736_{-0.087}^{+0.087}$	$5.75_{-0.67}^{+0.29}$

Name	Near IR excess (1.24-3.4 $\mu \mathrm{m}$)	Mid IR excess (3.4-22 $\mu \mathrm{m}$)	H α EW (A)	$\begin{array}{r} \mathrm{H} \alpha \\ \text { line shape } \end{array}$	V_{i}	$\begin{aligned} & \text { Mass } \\ & \left(M_{\odot}\right) \end{aligned}$	$\begin{array}{r} \text { Age } \\ (\mathrm{Myr}) \end{array}$
HD 135344B	$0.248_{-0.044}^{+0.050}$	$0.171_{-0.024}^{+0.030}$	-10.26 ± 0.94^{1}	s^{6}	-	$1.432_{-0.072}^{+0.072}$	$8.93{ }_{-0.01}^{+0.45}$
HD 139614	$0.106_{-0.024}^{+0.015}$	$0.211_{-0.015}^{+0.005}$	-12.8 ± 1.5^{1}	s^{21}	-0.19	$1.481_{-0.074}^{+0.074}$	$14.5{ }_{-3.6}^{+1.4}$
HD 141569	$\left(1.92{ }_{-0.34}^{+0.23}\right) \cdot 10^{-2}$	$\left(8.75_{-0.74}^{+0.67}\right) \cdot 10^{-3}$	-10.4 ± 1.7^{1}	d^{3}	-0.18	$1.860_{-0.093}^{+0.093}$	9_{-1}^{+11}
HD 141926	$\left(1.97_{-0.35}^{+0.49}\right) \cdot 10^{-3}$	$\left(0.41_{-0.07}^{+0.10}\right) \cdot 10^{-3}$	-46.88 ± 0.55^{1}	s^{21}	0.65	$19.5{ }_{-2.2}^{+2.4}$	$\left(2.37{ }_{-0.53}^{+0.76}\right) \cdot 10^{-2}$
HD 142527	$0.59_{-0.10}^{+0.07}$	$0.53_{-0.10}^{+0.10}$	-13.1 ± 1.2^{1}	s^{8}	0.30*	$1.61{ }_{-0.08}^{+0.12}$	$6.6_{-1.5}^{+0.3}$
HD 142666	$0.196_{-0.043}^{+0.049}$	$0.256_{-0.038}^{+0.046}$	-6.6 ± 1.4^{1}	P^{31}	3.01*	$1.493{ }_{-0}^{+0.075}$	$9.33_{-0.47}^{+0.77}$
HD 143006	$0.24_{-0.10}^{+0.15}$	$0.260_{-0.050}^{+0.089}$	-10.21 ± 0.15^{12}	S^{12}	0.38	$1.56_{-0.14}^{+0.10}$	$3.7_{-0.8}^{+1.7}$
HD 144432	$0.225_{-0.044}^{+0.026}$	$0.221_{-0.027}^{+0.015}$	-11.80 ± 0.35^{1}	d^{3}	0.08	$1.386_{-0.069}^{+0.069}$	$4.988_{-0.55}^{+0.25}$
HD 149914	$0.013_{-0.010}^{+0.009}$	$\left(1.26_{-0.80}^{+0.80}\right) \cdot 10^{-3}$	-	-	-0.21	$2.97_{-0.29}^{+0.39}$	$1.74{ }_{-0.54}^{+0.64}$
HD 150193	$0.162_{-0.018}^{+0.024}$	$0.186_{-0.030}^{+0.040}$	-21.7 ± 1.7^{1}	d^{3}	0.32	$1.891_{-0.095}^{+0.095}$	$5.48_{-0.27}^{+0.44}$
HD 155448	-	-	-	-	-0.09	$4.8{ }_{-1.0}^{+0.9}$	$0.44_{-0.20}^{+0.45}$
HD 158643	$0.016_{-0.016}^{+0.010}$	$0.023_{-0.012}^{+0.007}$	-3.30 ± 0.10^{3}	d^{3}	-0.13	$3.355_{-0.22}^{+0.79}$	$1.22_{-0.57}^{+0.29}$
HD 163296	$0.175_{-0.029}^{+0.022}$	$0.199_{-0.047}^{+0.051}$	-22.80 ± 0.68^{3}	d^{3}	0.20	$1.833_{-0.092}^{+0.092}$	$7.6_{-1.2}^{+1.1}$
HD 169142	$0.028_{-0.009}^{+0.032}$	$0.029_{-0.007}^{+0.020}$	-22.04 ± 0.15^{12}	S^{12}	0.00	$2.00_{-0.13}^{+0.13}$	9_{-4}^{+11}
HD 17081	$\left(0.20_{-0.20}^{+0.43}\right) \cdot 10^{-2}$	$\left(0.21_{-0.21}^{+0.22}\right) \cdot 10^{-3}$	-	-	0.27	$3.944_{-0.47}^{+0.81}$	$0.89_{-0.41}^{+0.40}$
HD 174571	$\left(0.00_{-0.00}^{+0.16}\right) \cdot 10^{-2}$	-0.21	1.79 ± 0.20^{32}	d^{21}	0.52	$12.9{ }_{-3.2}^{+6.4}$	$0.041_{-0.027}^{+0.057}$
HD 176386	$0.032_{-0.010}^{+0.034}$	-	-8.235 ± 0.050^{13}	s^{13}	-0.16	$2.30_{-0.30}^{+0.14}$	4_{-1}^{+16}
HD 179218	$0.038_{-0.014}^{+0.030}$	$0.161_{-0.032}^{+0.067}$	-13.60 ± 0.41^{3}	s^{3}	-0.13	$2.98{ }_{-0.18}^{+0.18}$	$1.66_{-0.26}^{+0.54}$
HD 199603	-0.014	$\left(0.04_{-0.04}^{+0.13}\right) \cdot 10^{-2}$	-	-	0.53	$2.03_{-0.10}^{+0.10}$	$4.05_{-0.20}^{+0.20}$
HD 200775	$0.041_{-0.022}^{+0.023}$	$0.039_{-0.022}^{+0.028}$	-63.8 ± 5.9^{6}	d^{6}	0.07	$5.3+1.3$	$0.41_{-0.20}^{+0.15}$
HD 235495	$0.33_{-0.14}^{+0.06}$	$0.32_{-0.13}^{+0.06}$	-	-	0.31	$2.05_{-0.10}^{+0.30}$	$4.7{ }_{-15}^{+0.8}$
HD 244314	$0.173_{-0.012}^{+0.019}$	$0.175_{-0.011}^{+0.016}$	-29.6 ± 1.7^{1}	s^{21}	0.16	$1.691_{-0.085}^{+0.093}$	$7.43_{-0.54}^{+0.37}$
HD 244604	$0.169_{-0.011}^{+0.020}$	$0.145_{-0.016}^{+0.016}$	-12.5 ± 1.6^{1}	P^{7}	0.07	$1.988_{-0.10}^{+0.10}$	$4.89_{-0.52}^{+0.24}$
HD 245185	$0.133_{-0.024}^{+0.018}$	$0.333_{-0.049}^{+0.039}$	-28.0 ± 1.5^{1}	s^{26}	0.38	$1.922_{-0.10}^{+0.18}$	8_{-3}^{+12}
HD 249879	$0.065_{-0.029}^{+0.024}$	$0.193_{-0.077}^{+0.060}$	-47.7 ± 2.0^{15}	s^{21}	0.00	$2.25{ }_{-0.16}^{+0.49}$	5_{-2}^{+15}
HD 250550	$0.286_{-0.048}^{+0.042}$	$0.357_{-0.061}^{+0.055}$	-58.9 ± 1.1^{1}	P^{22}	0.63	$2.60_{-0.14}^{+0.30}$	$2.56_{-0.67}^{+0.43}$
HD 259431	$0.07{ }_{-0.03}^{+0.11}$	$0.11_{-0.06}^{+0.19}$	-76.5 ± 2.1^{7}	d^{7}	0.35	$5.2^{+1.8}$	$0.42_{-0.28}^{+0.53}$
HD 287823	$0.128_{-0.017}^{+0.008}$	$0.158_{-0.013}^{+0.007}$	-5.4 ± 1.6^{1}	d^{31}	-0.17	$1.704_{-0.085}^{+0.085}$	$7.43_{-0.37}^{+0.37}$
HD 288012		.	-	-	-0.15	$2.22_{-0.13}^{+0.39}$	$3.8{ }_{-1.4}^{+0.6}$
HD 290380	$0.24_{-0.10}^{+0.04}$	$0.208_{-0.054}^{+0.020}$	-11.59 ± 0.70^{14}	S^{14}	0.20	$1.53_{-0.16}^{+0.16}$	$7.2^{+0.8}$
HD 290409	$0.072_{-0.011}^{+0.006}$	$0.114_{-0.016}^{+0.012}$	-14.6 ± 1.6^{1}	d^{21}	0.24	$1.90_{-0.09}^{+0.18}$	7_{-2}^{+13}
HD 290500	$0.115_{-0.018}^{+0.010}$	$0.121_{-0.017}^{+0.013}$	-14.6 ± 1.3^{1}	d^{21}	2.05	$1.383_{-0.069}^{+0.082}$	$10.4_{-3.3}^{+9.3}$
HD 290764	$0.245_{-0.058}^{+0.065}$	$0.221_{-0.033}^{+0.040}$	-15.7 ± 1.4^{1}	s^{21}	0.11	$1.69_{-0.08}^{+0.13}$	6.9 ${ }_{-1.4}^{+0.5}$
HD 290770	$0.152_{-0.020}^{+0.013}$	$0.136_{-0.011}^{+0.011}$	-37.1 ± 1.4^{1}	P^{31}	-0.04	$2.22_{-0.11}^{+0.11}$	$4.59_{-0.54}^{+0.49}$
HD 305298	$\left(0.87_{-0.10}^{+0.15}\right) \cdot 10^{-3}$	$\left(4.62_{-0.35}^{+0.47}\right) \cdot 10^{-3}$	-3.24 ± 0.52^{1}	s^{31}	-0.09	$17.7_{-2.0}^{+2.1}$	$0.04_{-0.01}^{+0.31}$
HD 313571	$\left(1.24_{-0.66}^{+0.61}\right) \cdot 10^{-2}$	$\left(0.31_{-0.15}^{+0.12}\right) \cdot 10^{-2}$	-38.8 ± 1.7^{2}	s^{2}	0.23	$7.3_{-1.2}^{+2.9}$	$0.17_{-0.11}^{+0.14}$

Name	Near IR excess $(1.24-3.4 \mu \mathrm{~m})$	Mid IR excess $(3.4-22 \mu \mathrm{~m})$	H α EW (Å)	$\begin{array}{r} \mathrm{H} \alpha \\ \text { line shape } \end{array}$	V_{i}	$\begin{aligned} & \text { Mass } \\ & \left(M_{\odot}\right) \end{aligned}$	$\begin{array}{r} \text { Age } \\ (\mathrm{Myr}) \end{array}$
HD 31648	$0.166_{-0.066}^{+0.027}$	$0.167_{-0.053}^{+0.032}$	-19.40 ± 0.58^{3}	d^{3}	0.01	$1.78{ }_{-0.09}^{+0.13}$	$6.2_{-1.1}^{+0.3}$
HD 319896	$\left(0.96{ }_{-0.37}^{+0.55}\right) \cdot 10^{-2}$	$\left(0.80_{-0.21}^{+0.26}\right) \cdot 10^{-2}$	-31.6 ± 1.4^{15}	s^{21}	0.00	$5.9_{-0.8}^{+1.2}$	$0.30_{-0.13}^{+0.18}$
HD 323771	$0.087_{-0.024}^{+0.039}$	$0.085_{-0.022}^{+0.036}$	-59.4 ± 2.7^{15}	P^{21}	0.91	$3.84_{-0.38}^{+0.36}$	$1.08_{-0.26}^{+0.55}$
HD 34282	$0.183_{-0.017}^{+0.014}$	$0.136_{-0.012}^{+0.009}$	-12.1 ± 1.7^{1}	d^{3}	0.71	$1.450_{-0.072}^{+0.072}$	$6.5_{-0.6}^{+2.4}$
HD 344261	$0.024_{-0.024}^{+0.056}$,	-	-	-0.24	$1.343_{-0.067}^{+0.067}$	$12.1_{-2.0}^{+3.8}$
HD 34700	-0.02	-	-2.400 ± 0.072^{3}	s^{3}	-0.09	$2.66{ }_{-0.13}^{+0.32}$	$1.40_{-0.44}^{+0.23}$
HD 35187	$0.10_{-0.06}^{+0.10}$	$0.060_{-0.031}^{+0.048}$	-13.28 ± 0.20^{22}	s^{22}	-	$2.10_{-0.25}^{+0.25}$	5_{-2}^{+15}
HD 35929	$0.074_{-0.028}^{+0.019}$	$\left(4.27_{-0.58}^{+0.35}\right) \cdot 10^{-2}$	-7.2 ± 1.1^{1}	s^{7}	-0.26	$2.92_{-0.15}^{+0.15}$	$1.466_{-0.17}^{+0.07}$
HD 36112	$0.239_{-0.090}^{+0.079}$	$0.258{ }_{-0.076}^{+0.077}$	-16.51 ± 0.63^{7}	s^{7}	-0.04	$1.56_{-0.08}^{+0.11}$	$8.3_{-1.4}^{+0.4}$
HD 36408	$\left(0.05_{-0.05}^{+0.73}\right) \cdot 10^{-2}$	-0.076	-2.67 ± 0.20^{15}	s^{8}	-0.23	$6.2_{-10}^{+1.2}$	$0.22_{-0.09}^{+0.17}$
HD 36917	$0.047_{-0.022}^{+0.051}$	$0.050_{-0.020}^{+0.046}$	-9.17 ± 0.10^{22}	s^{22}	0.30	$3.711_{-0.75}^{+0.94}$	$0.99_{-0.50}^{+0.90}$
HD 36982	-	.	-	-	-0.13	$5.20_{-0.29}^{+0.42}$	$0.733_{-0.17}^{+0.47}$
HD 37258	$0.142_{-0.025}^{+0.027}$	$0.147_{-0.023}^{+0.025}$	-15.3 ± 1.6^{1}	d^{22}	2.22*	$1.888_{-0.11}^{+0.14}$	8_{-2}^{+12}
HD 37357	$0.086_{-0.012}^{+0.007}$	$0.085_{-0.010}^{+0.006}$	-9.9 ± 1.5^{1}	P^{21}	0.56	$3.0_{-0.4}^{+1.0}$	$1.69_{-0.93}^{+0.87}$
HD 37371	-	-	-12.37 ± 0.22^{11}	-	-0.19	$3.855_{-0.67}^{+0.63}$	$0.86_{-0.34}^{+0.65}$
HD 37490	$\left(0.09_{-0.09}^{+0.34}\right) \cdot 10^{-2}$	$\left(0.16_{-0.09}^{+0.12}\right) \cdot 10^{-2}$	-8.33 ± 0.18^{9}	d^{8}	1.55	$8.6_{-1.6}^{+3.9}$	$0.10_{-0.07}^{+0.11}$
HD 37806	$0.187_{-0.067}^{+0.070}$	$0.200_{-0.076}^{+0.087}$	$-25.07 \pm 0.85{ }^{9}$	d^{22}	0.49	$3.11_{-0.35}^{+0.55}$	$1.56_{-0.60}^{+0.64}$
HD 38087	$0.022_{-0.011}^{+0.015}$	$\left(0.27_{-0.13}^{+0.16}\right) \cdot 10^{-2}$	-	-	-	$3.21_{-0.38}^{+0.79}$	$1.8_{-0.6}^{+9.2}$
HD 38120	$0.089_{-0.052}^{+0.052}$	$0.22_{-0.10}^{+0.10}$	-45.1 ± 1.8^{15}	s^{21}	0.02	$2.37_{-0.24}^{+0.43}$	3_{-1}^{+14}
HD 39014	$0.009_{-0.009}^{+0.032}$	$\left(0.29_{-0.29}^{+0.28}\right) \cdot 10^{-2}$	-	-	0.78	$2.00_{-0.10}^{+0.23}$	$4.4_{-1.2}^{+0.2}$
HD 41511	$0.455_{-0.24}^{+0.28}$	$0.16_{-0.09}^{+0.12}$	-	P^{8}	0.33	$5.8_{-0.8}^{+1.3}$	$0.22_{-0.10}^{+0.14}$
HD 45677	$0.146_{-0.070}^{+0.056}$	$0.51_{-0.27}^{+0.28}$	-61.8 ± 5.7^{6}	d^{6}	0.46	$4.7_{-0.4}^{+1.2}$	$0.6_{-0.3}^{+3.8}$
HD 46060	-	$\left(0.22_{-0.14}^{+0.26}\right) \cdot 10^{-3}$	-	-	-0.21	$9.6{ }_{-2.4}^{+3.4}$	$0.09_{-0.05}^{+0.12}$
HD 50083	$\left(0.42_{-0.31}^{+0.32}\right) \cdot 10^{-2}$	$\left(1.53_{-0.78}^{+0.70}\right) \cdot 10^{-3}$	-47.8 ± 1.3^{7}	s^{7}	0.05	$11.4{ }_{-1.8}^{+3.7}$	$0.047_{-0.022}^{+0.037}$
HD 50138	$0.238_{-0.067}^{+0.062}$	$0.34_{-0.14}^{+0.19}$	-81.7 ± 7.1^{6}	d^{6}	0.62	$4.17_{-0.32}^{+0.46}$	$0.63_{-0.18}^{+0.19}$
HD 56895B	-0.067	-0.14	-	-	-0.16	$1.53_{-0.08}^{+0.11}$	$8.3_{-1.4}^{+0.4}$
HD 58647	$0.046_{-0.018}^{+0.019}$	$0.054_{-0.019}^{+0.025}$	-11.40 ± 0.30^{3}	d^{3}	-0.17	$3.87_{-0.19}^{+0.33}$	$0.84_{-0.18}^{+0.12}$
HD 59319	$\left(0.33_{-0.23}^{+0.09}\right) \cdot 10^{-2}$	$\left(0.83_{-0.16}^{+0.08}\right) \cdot 10^{-3}$	-1.3 ± 6.2^{1}	-	-0.12	$3.81_{-0.26}^{+0.31}$	$0.96_{-0.20}^{+0.24}$
HD 68695	${ }^{0.129}{ }_{-0.017}^{+0.009}$	$0.138_{-0.015}^{+0.009}$	-16.0 ± 1.7^{1}	s^{21}	0.24	$1.833_{-0.092}^{+0.092}$	$7.6_{-1.2}^{+1.1}$
HD 76534	$\left(2.46{ }_{-0.43}^{+0.39}\right) \cdot 10^{-3}$	$\left(7.41_{-0.79}^{+0.73}\right) \cdot 10^{-4}$	-16.84 ± 0.67^{1}	d^{8}	0.65	$7.46{ }_{-0.51}^{+0.51}$	$0.171_{-0.028}^{+0.023}$
HD 85567	$0_{0.079}^{-0.016}$	$0_{0.089}^{-0.025}$	-42.8 ± 2.1^{1}	s^{31}	0.17	$6.32_{-0.39}^{+0.53}$	$0.217_{-0.051}^{+0.045}$
HD 87403	$\left(1.70_{-0.43}^{+0.14}\right) \cdot 10^{-2}$	$\left(2.12_{-0.36}^{+0.16}\right) \cdot 10^{-3}$	-3.0 ± 1.2^{1}	d^{31}	-0.19	$5.51_{-0.53}^{+0.65}$	$0.28_{-0.08}^{+0.11}$
HD 87643	$0.11_{-0.08}^{+0.22}$	$0.19_{-0.13}^{+0.38}$	-145 ± 14^{6}	d^{34}	5.31	18_{-7}^{+11}	$0.020_{-0.010}^{+0.052}$
HD 94509	$\left(1.23_{-0.31}^{+0.11}\right) \cdot 10^{-2}$	$\left(3.26{ }_{-0.69}^{+0.56}\right) \cdot 10^{-3}$	-23.17 ± 0.82^{1}	d^{31}	-0.10	$5.7_{-0.8}^{+1.1}$	$0.28_{-0.12}^{+0.17}$
HD 95881	$0.228_{-0.036}^{+0.028}$	$0.284_{-0.048}^{+0.044}$	-21.9 ± 1.0^{1}	d^{6}	0.10	$5.50_{-0.27}^{+0.50}$	$0.280_{-0.071}^{+0.050}$
HD 96042	$\left(1.44_{-0.31}^{+0.32}\right) \cdot 10^{-3}$	$\left(1.23_{-0.21}^{+0.21}\right) \cdot 10^{-4}$	-0.75 ± 0.89^{1}	d^{21}	0.05	$20.7_{-2.9}^{+3.9}$	$\left(1.90_{-0.54}^{+0.79}\right) \cdot 10^{-2}$

Name	Near IR excess $(1.24-3.4 \mu \mathrm{~m})$	Mid IR excess $(3.4-22 \mu \mathrm{~m})$	H α EW (A)	$\mathrm{H} \alpha$ line shape	V_{i}	Mass $\left(M_{\odot}\right)$	$\begin{array}{r} \text { Age } \\ (\mathrm{Myr}) \end{array}$
HD 9672	$\left(0.27_{-0.27}^{+0.42}\right) \cdot 10^{-2}$	$\left(0.73_{-0.73}^{+0.53}\right) \cdot 10^{-3}$	-	-	-0.14	$1.810_{-0.090}^{+0.090}$	$6.89_{-0.51}^{+0.34}$
HD 97048	${ }^{-0.109} 9_{-0.018}^{+0.017}$	-0.139 ${ }_{-0.022}^{+0.022}$	-38.0 ± 1.4^{1}	d^{31}	-0.10	$2.255_{-0.11}^{+0.11}$	$4.4_{-0.3}^{+1.1}$
HD 98922	$0.189_{-0.015}^{+0.015}$	$0.219_{-0.019}^{+0.019}$	-24.7 ± 1.1^{1}	P^{4}	-0.02*	$6.17_{-0.31}^{+0.37}$	$0.204_{-0.038}^{+0.010}$
HR 5999	$0.180_{-0.019}^{+0.017}$	$0.163_{-0.018}^{+0.017}$	-15.64 ± 0.28^{17}	d^{8}	23.51*	$2.43_{-0.12}^{+0.12}$	$2.73_{-0.35}^{+0.26}$
HT CMa	$0.419_{-0.064}^{+0.061}$	$0.596_{-0.088}^{+0.085}$	-32.8 ± 1.2^{1}	d^{22}	0.58	$2.12_{-0.12}^{+0.19}$	5_{-1}^{+15}
HU CMa	$\left(6.23_{-0.54}^{+0.52}\right) \cdot 10^{-2}$	$\left(12.87_{-0.92}^{+0.90}\right) \cdot 10^{-2}$	-61.09 ± 0.99^{1}	d^{22}	0.96	$3.02_{-0.15}^{+0.15}$	$2.04_{-0.15}^{+0.34}$
Hen 3-1121	$0.01_{-0.01}^{+0.16}$	$0.02_{-0.02}^{+0.25}$	-1.590 ± 0.050^{2}	s^{2}	1.83	10_{-4}^{+19}	$0.1_{-0.1}^{+1.3}$
Hen 3-1121S	-	$\left(0.96{ }_{-0.35}^{+0.82}\right) \cdot 10^{-3}$	-1.29 ± 0.00^{2}	s^{2}	-	$12.1{ }_{-3.2}^{+5.2}$	$0.08_{-0.04}^{+0.53}$
Hen 3-1191	$0.10_{-0.04}^{+0.10}$	$0.30_{-0.15}^{+0.42}$	-	-	-	$8.1_{-0.4}^{+2.1}$	$0.23_{-0.11}^{+0.37}$
Hen 3-823	$\left(0.50_{-0.31}^{+0.32}\right) \cdot 10^{-2}$	$\left(1.07_{-0.53}^{+0.45}\right) \cdot 10^{-3}$	-29.8 ± 1.2^{2}	d^{2}	0.46	$4.8_{-0.5}^{+1.6}$	$0.6_{-0.3}^{+1.5}$
Hen 3-847	$0.126_{-0.022}^{+0.029}$	$1.72_{-0.47}^{+0.67}$	-108.62 ± 0.87^{1}	s^{21}	1.24	$3.00_{-0.15}^{+0.60}$	$2.4_{-1.1}^{+8.5}$
Hen 3-938	$0.018_{-0.005}^{+0.012}$	$0.021_{-0.008}^{+0.018}$	-93.0 ± 4.5^{27}	d^{21}	2.03	$25.8{ }_{-6.0}^{+6.6}$	$0.017_{-0.006}^{+0.012}$
IL Cep	-0.00	-0.008	$-22.83 \pm 0.54{ }^{7}$	s^{7}	-0.15*	$9.8_{-1.3}^{+2.7}$	$0.070_{-0.033}^{+0.044}$
IP Per	$0.25_{-0.08}^{+0.15}$	$0.155_{-0.035}^{+0.073}$	-30.6 ± 1.1^{5}	d^{26}	-	$1.56{ }_{-0.12}^{+0.11}$	$12.0_{-3.3}^{+8.0}$
KK Oph	$1.24_{-0.25}^{+0.34}$	$1.588_{-0.37}^{+0.52}$	-41.5 ± 1.7^{1}	s^{3}	-*	$1.513_{-0.076}^{+0.076}$	$18.5_{-1.4}^{+1.5}$
LKHa 260	$0.050_{-0.016}^{+0.025}$	$0.080_{-0.024}^{+0.037}$	-	-	50.67	$3.03_{-0.31}^{+0.53}$	$2.2_{-0.8}^{+8.7}$
LKHa 338	$0.72_{-0.50}^{+0.50}$	$3.0_{-07}^{+1.9}$	-59.1 ± 2.6^{5}	s^{25}	0.54	$1.885_{-0.094}^{+0.094}$	9_{-2}^{+11}
LkHa 208	$0.17_{-0.09}^{+0.11}$	$1.02_{-0.30}^{+0.43}$	-14.16 ± 0.24^{5}	d^{26}	-0.18	$1.566_{-0.14}^{+0.47}$	9_{-5}^{+11}
LkHa 215	$0.067_{-0.021}^{+0.034}$	$0.071_{-0.021}^{+0.032}$	-31.2 ± 1.3^{5}	d^{7}	1.87	$3.82_{-0.59}^{+0.59}$	$1.03_{-0.38}^{+0.26}$
LkHa 257	$0.026_{-0.008}^{+0.012}$	$\left(1.79_{-0.44}^{+0.71}\right) \cdot 10^{-2}$	-	-	0.37	$3.08_{-0.15}^{+0.15}$	$3.6_{-1.1}^{+1.1}$
LkHa 259	$0.32_{-0.06}^{+0.13}$	0.84 ${ }_{-0.12}^{+0.23}$	-31.3 ± 1.2^{5}	-	3.19	$1.70_{-0.13}^{+0.10}$	$6.4_{-0.9}^{+1.6}$
LkHa 324	$\left(0.26_{-0.26}^{+0.76}\right) \cdot 10^{-2}$	$\left(1.99_{-0.81}^{+0.64}\right) \cdot 10^{-2}$	-21.97 ± 0.76^{5}	d^{26}	-0.13	$2.82_{-0.20}^{+0.61}$	$2.12_{-0.92}^{+0.44}$
LkHa 339	$\left(1.63_{-0.16}^{+0.15}\right) \cdot 10^{-2}$	$\left(10.28_{-0.71}^{+0.77}\right) \cdot 10^{-2}$	-18.4 ± 1.9^{1}	s^{31}	0.33	$2.59_{-0.13}^{+0.13}$	$2.54_{-0.16}^{+0.23}$
MQ Cas	-	(10.28-0.71 ${ }^{\text {d }}$	-	-	-*	$1.80_{-0.09}^{+0.30}$	$11.3_{-6.2}^{+8.7}$
MWC 1021	$0.006_{-0.006}^{+0.029}$	$0.004_{-0.003}^{+0.021}$	-	-	-	32_{-14}^{+2}	$0.010_{-0.000}^{+0.019}$
MWC 1080	$0.021_{-0.008}^{+0.018}$	$0.019_{-0.007}^{+0.016}$	-113.2 ± 3.4^{7}	P^{7}	4.02	16.1-4.2	$0.04_{-0.02}^{+0.45}$
MWC 137	$\left(0.84_{-0.36}^{+0.80}\right) \cdot 10^{-2}$	$0.013_{-0.006}^{+0.013}$	-371 ± 37^{6}	s^{6}	0.96	23_{-7}^{+11}	$0.018_{-0.008}^{+0.019}$
MWC 297	$\left(1.17_{-0.40}^{+0.60}\right) \cdot 10^{-2}$	$0.015_{-0.006}^{+0.010}$	-594.5 ± 1.0^{1}	s^{7}	1.44	$16.9_{-1.2}^{+1.9}$	$\left(2.75_{-0.61}^{+0.62}\right) \cdot 10^{-2}$
MWC 342	$0.021_{-0.011}^{+0.023}$	$0.027_{-0.015}^{+0.035}$	-291 ± 80^{10}	d^{10}	3.84	$22.4{ }_{-6.0}^{+9.0}$	${ }^{-0.016}{ }_{-0.006}^{+0.020}$
MWC 593	-0.011	-0.015	-39.6 ± 1.8^{2}	S^{2}	0.62	$8.0_{-1.3}^{+1.8}$	$0.123_{-0.056}^{+0.086}$
MWC 655	$0.011_{-0.005}^{+0.014}$	$\left(0.26{ }_{-0.12}^{+0.31}\right) \cdot 10^{-2}$	-15.49 ± 0.72^{32}	-	2.00	$11.5_{-3.0}^{+4.2}$	$0.07_{-0.04}^{+0.54}$
MWC 657	$0.017_{-0.014}^{+0.085}$	0.03 ${ }_{-0.02}^{+0.14}$	-186 ± 13^{37}	d^{37}	-	18_{-9}^{++5}	$0.02_{-0.01}^{+0.50}$
MWC 878	$0.012_{-0.006}^{+0.018}$	$0.041_{-0.021}^{+0.064}$	-55.2 ± 2.7^{2}	s^{2}	0.09	$13.5{ }_{-3.9}^{+5.7}$	$0.05_{-0.03}^{+0.47}$
MWC 953	$\left(0.27_{-0.27}^{+0.38}\right) \cdot 10^{-2}$	$\left(0.63_{-0.37}^{+0.61}\right) \cdot 10^{-3}$	-32.2 ± 1.6^{2}	d^{2}	3.85	$12.7{ }_{-3.3}^{+6.6}$	$0.042_{-0.028}^{+0.063}$
NSV 2968	$\left(0.83_{-0.32}^{+0.78}\right) \cdot 10^{-2}$	$\left(0.79_{-0.28}^{+0.67}\right) \cdot 10^{-2}$	-41.2 ± 2.0^{15}	P^{21}	59.72	$9.0_{-1.0}^{+2.0}$	$0.20_{-0.10}^{+0.40}$
NV Ori	${ }^{0.126_{-0.082}^{+0.056}}$	$0.173_{-0.049}^{+0.030}$	-4.00 ± 0.12^{3}	d^{3}	1.28	$1.84_{-0.11}^{+0.25}$	$4.9^{+1.0}$

Name	Near IR excess $(1.24-3.4 \mu \mathrm{~m})$	Mid IR excess $(3.4-22 \mu \mathrm{~m})$	H α EW (A)	$\begin{array}{r} \mathrm{H} \alpha \\ \text { line shape } \end{array}$	V_{i}	$\begin{aligned} & \text { Mass } \\ & \left(M_{\odot}\right) \end{aligned}$	$\begin{array}{r} \text { Age } \\ (\mathrm{Myr}) \end{array}$
PDS 002	$0.055_{-0.049}^{+0.017}$	$0.112_{-0.029}^{+0.004}$	-8.45 ± 0.20^{13}	s^{21}	-0.12	$1.384_{-0.069}^{+0.092}$	$10.9{ }_{-2.2}^{+0.5}$
PDS 004	$0.070_{-0.035}^{+0.019}$	$0.102_{-0.040}^{+0.020}$	-18.78 ± 0.45^{15}	s^{21}	0.18	$1.90_{-0.09}^{+0.32}$	7_{-3}^{+13}
PDS 021	$0.051_{-0.014}^{+0.019}$	$0.087_{-0.024}^{+0.031}$	$-96.02 \pm 0.83{ }^{1}$	P^{21}	1.01	$3.94{ }_{-0.45}^{+0.51}$	$1.0_{-0.3}^{+3.1}$
PDS 022	$0.038_{-0.024}^{+0.013}$	$0.182_{-0.071}^{+0.034}$	-34.8 ± 1.2^{15}	s^{21}	-	$2.46_{-0.24}^{+0.73}$	$2.9_{-1.5}^{+0.9}$
PDS 025	$0.60_{-0.12}^{+0.12}$	$0.59_{-0.11}^{+0.11}$	-22.16 ± 0.65^{15}	d^{21}	17.20	$1.228_{-0.061}^{+0.061}$	$11.3{ }_{-2.4}^{+8.4}$
PDS 123	$0.04_{-0.03}^{+0.19}$	$0.03_{-0.03}^{+0.16}$	-	P^{25}	10.10	$5.0_{-2.3}^{+3.7}$	1_{-1}^{+10}
PDS 124	$\left(9.20_{-0.92}^{+0.63}\right) \cdot 10^{-2}$	$0.214_{-0.019}^{+0.014}$	-28.0 ± 2.0^{1}	P^{31}	0.51	$2.07_{-0.12}^{+0.10}$	6_{-1}^{+14}
PDS 126	$0.141_{-0.056}^{+0.065}$	$0.127_{-0.029}^{+0.037}$	-14.26 ± 0.25^{15}	d^{25}	0.05	$1.944_{-0.17}^{+0.23}$	$4.7_{-1.2}^{+1.2}$
PDS 129	$0.111_{-0.056}^{+0.086}$	$0.164_{-0.034}^{+0.054}$	-	-	0.25	$1.57{ }_{-0.16}^{+0.21}$	$7.2_{-2.2}^{+2.1}$
PDS 130	$0.157_{-0.012}^{+0.011}$	$0.254_{-0.018}^{+0.017}$	-42.6 ± 1.3^{1}	P^{21}	0.18	$2.33_{-0.12}^{+0.12}$	$3.48_{-0.26}^{+0.27}$
PDS 133	$0.104_{-0.036}^{+0.060}$	$0.151_{-0.051}^{+0.086}$	-110.9 ± 4.0^{1}	P^{4}	13.08*	$2.933_{-0.44}^{+0.45}$	3_{-1}^{+14}
PDS 134		. 0	-18.20 ± 0.73^{1}	d^{21}	-0.12	$4.28_{-0.38}^{+0.52}$	$0.73_{-0.21}^{+0.22}$
PDS 138	-	-	-	d^{21}	0.41	$28.3_{-8.2}^{+7.4}$	$0.013_{-0.003}^{+0.012}$
PDS 174	$0.025_{-0.008}^{+0.012}$	$0.090_{-0.026}^{+0.041}$	-60.7 ± 1.5^{1}	d^{21}	-	$2.711_{-0.23}^{+0.36}$	2_{-1}^{+18}
PDS 211	$0.054_{-0.015}^{+0.047}$	$0.15_{-0.04}^{+0.10}$	-43.1 ± 1.8^{15}	s^{21}	1.04	$2.41_{-0.28}^{+0.29}$	3_{-1}^{+14}
PDS 24	$0.143_{-0.021}^{+0.022}$	$0.371_{-0.050}^{+0.055}$	-38.5 ± 2.2^{1}	d^{21}	2.35	$1.955_{-0.10}^{+0.10}$	10_{-4}^{+10}
PDS 241	$\left(2.04_{-0.53}^{+0.42}\right) \cdot 10^{-3}$	$0.107_{-0.024}^{+0.017}$	-12.57 ± 0.51^{1}	s^{21}	0.12	$11.1{ }_{-1.3}^{+2.3}$	$0.078_{-0.028}^{+0.036}$
PDS 27	$0.044_{-0.020}^{+0.046}$	$0.12_{-0.06}^{+0.14}$	-77.60 ± 0.85^{1}	P^{4}	15.40	$12.2_{-3.4}^{+5.5}$	$0.042_{-0.027}^{+0.072}$
PDS 277	$0.128_{-0.046}^{+0.021}$	$0.199_{-0.030}^{+0.005}$	-6.53 ± 0.15^{15}	s^{21}	-0.14	$1.5433_{-0.077}^{+0.077}$	$7.766_{-0.87}^{+0.39}$
PDS 286	$\left(1.57_{-0.42}^{+0.50}\right) \cdot 10^{-3}$	$\left(0.48_{-0.14}^{+0.15}\right) \cdot 10^{-4}$	-30.77 ± 0.57^{1}	s^{21}	1.15	$31.2_{-5.5}^{+4.5}$	$\left(1.12_{-0.12}^{+0.58}\right) \cdot 10^{-2}$
PDS 290	-	$\left(0.27_{-0.27}^{+0.79}\right) \cdot 10^{-3}$	-12.66 ± 0.35^{15}	-	-	$2.35_{-0.12}^{+0.30}$	5_{-1}^{+15}
PDS 297	$\left(0.46_{-0.46}^{+0.80}\right) \cdot 10^{-2}$	$\left(0.67_{-0.44}^{+0.66}\right) \cdot 10^{-3}$	-3.9 ± 1.2^{1}	d^{31}	-0.09	$2.99_{-0.31}^{+0.27}$	$1.75_{-0.35}^{+0.63}$
PDS 324	-	-	-5.19 ± 0.20^{15}	-	0.49	$7.7_{-2.2}^{+2.3}$	$0.3_{-0.1}^{+1.5}$
PDS 33	$0.107{ }_{-0.012}^{+0.007}$	$0.242_{-0.023}^{+0.015}$	-18.9 ± 1.6^{1}	s^{31}	-0.11	$1.850_{-0.093}^{+0.093}$	$10.7_{-3.9}^{+9.3}$
PDS 34	$0.039_{-0.022}^{+0.035}$	$0.052_{-0.028}^{+0.044}$	-50.2 ± 2.5^{15}	d^{21}	3.28	$5.3_{-1.2}^{+1.6}$	$0.7_{-0.4}^{+4.8}$
PDS 344	$\left(1.56{ }_{-0.17}^{+0.26}\right) \cdot 10^{-2}$	$\left(4.14_{-0.35}^{+0.57}\right) \cdot 10^{-2}$	-30.03 ± 0.90^{1}	d^{21}	-0.07	$3.48_{-0.23}^{+0.17}$	$1.8_{-0.2}^{+8.4}$
PDS 361S	$0.017_{-0.010}^{+0.019}$	-	-9.32 ± 0.70^{1}	d^{21}	0.78	$5.0_{-0.7}^{+1.0}$	$0.6_{-0.3}^{+3.8}$
PDS 37	$0.019_{-0.009}^{+0.020}$	$0.058_{-0.025}^{+0.059}$	-123.76 ± 0.61^{1}	P^{4}	4.84	$10.9_{-3.0}^{+4.5}$	$0.06_{-0.03}^{+0.10}$
PDS 389	$0.086_{-0.027}^{+0.049}$	$0.057_{-0.012}^{+0.020}$	-18.94 ± 0.45^{15}	P^{21}	-0.00	$2.911_{-0.33}^{+0.36}$	$1.688_{-0.48}^{+0.70}$
PDS 415N	$0.056_{-0.056}^{+0.091}$	$0.116_{-0.042}^{+0.045}$	-1.9 ± 1.4^{1}	d^{31}	5.79	$1.21_{-0.09}^{+0.16}$	$13.1{ }_{-4.5}^{+5.4}$
PDS 431	$\left(1.62_{-0.32}^{+0.29}\right) \cdot 10^{-2}$	-	-9.2 ± 1.2^{1}	d^{21}	-0.20	$2.52_{-0.15}^{+0.27}$	$2.77_{-0.73}^{+0.45}$
PDS 469	$0.045_{-0.026}^{+0.014}$	$0.087{ }_{-0.034}^{+0.017}$	-7.78 ± 0.10^{15}	s^{21}	0.71	$2.15_{-0.15}^{+0.55}$	$4.0_{-1.8}^{+1.4}$
PDS 477	$0.036_{-0.017}^{+0.047}$	$0.048_{-0.022}^{+0.060}$	-121.2 ± 6.0^{15}	d^{21}	1.31	$8.3_{-2.4}^{+3.3}$	$0.2_{-0.1}^{+1.6}$
PDS 520	$1.35{ }_{-0.40}^{+0.39}$	$1.31_{-0.35}^{+0.33}$	-36.5 ± 1.6^{15}	d^{21}	-	$1.26_{-0.06}^{+0.15}$	14.1 $1_{-4.0}^{+5.9}$
PDS 543	-	$\left(0.50_{-0.19}^{+0.45}\right) \cdot 10^{-3}$	-2.190 ± 0.050^{15}	s^{21}	-0.13	$30.7_{-9.1}^{+5.0}$	$0.011_{-0.001}^{+0.012}$
PDS 69	-	-	-76.4 ± 1.5^{1}	d^{21}	-0.11	$4.18_{-0.51}^{+0.73}$	$0.8_{-0.3}^{+5.6}$

Name	Near IR excess (1.24-3.4 $\mu \mathrm{m}$)	Mid IR excess ($3.4-22 \mu \mathrm{~m}$)	H α EW (A)	$\begin{array}{r} \mathrm{H} \alpha \\ \text { line shape } \end{array}$	V_{i}	$\begin{aligned} & \text { Mass } \\ & \left(M_{\odot}\right) \end{aligned}$	$\begin{array}{r} \text { Age } \\ (\mathrm{Myr}) \end{array}$
PX Vul	$0.29_{-0.11}^{+0.11}$	$0.197_{-0.054}^{+0.049}$	-14.40 ± 0.43^{3}	d^{3}	3.67*	$2.10_{-0.22}^{+0.32}$	$3.5_{-1.1}^{+1.2}$
RR Tau	$0.155_{-0.054}^{+0.040}$	$0.169_{-0.051}^{+0.040}$	-25.60 ± 0.77^{3}	d^{3}	-*	$2.82_{-0.19}^{+0.46}$	$1.988_{-0.69}^{+0.40}$
RY Ori	$0.151_{-0.071}^{+0.080}$	$0.157_{-0.033}^{+0.037}$	-15.80 ± 0.47^{3}	d^{3}	-*	$1.54_{-0.08}^{+0.15}$	$7.2_{-1.7}^{+0.9}$
SAO 185668	.	$\left(0.32_{-0.15}^{+0.12}\right) \cdot 10^{-2}$	$-$	-	-0.24	$9.4_{-1.6}^{+3.6}$	$0.081_{-0.047}^{+0.073}$
SAO 220669	$\left(0.49_{-0.15}^{+0.28}\right) \cdot 10^{-2}$	$\left(1.19_{-0.32}^{+0.51}\right) \cdot 10^{-3}$	-1.12 ± 0.73^{1}	-	-0.07	$7.9_{-1.1}^{+1.2}$	$0.127_{-0.049}^{+0.082}$
SV Cep	$0.207_{-0.042}^{+0.052}$	$0.348_{-0.059}^{+0.072}$	-11.70 ± 0.35^{3}	d^{3}	4.49*	$1.550_{-0.077}^{+0.077}$	6_{-1}^{+13}
T Ori	$0.397_{-0.080}^{+0.075}$	$0.287_{-0.066}^{+0.069}$	-17.2 ± 1.4^{1}	d^{3}	-*	$2.11_{-0.11}^{+0.14}$	$4.155_{-0.67}^{+0.56}$
TY CrA	$0.042_{-0.012}^{+0.040}$	$0.54_{-0.20}^{+0.53}$	${ }^{-}$	-	1.39	$2.06_{-0.19}^{+0.22}$	6_{-2}^{+14}
UX Ori	$0.367_{-0.046}^{+0.031}$	$0.399_{-0.048}^{+0.035}$	-12.3 ± 1.5^{1}	d^{31}	16.25*	$1.612_{-0.081}^{+0.091}$	$11.4{ }_{-2.7}^{+8.6}$
V1012 Ori	$0.160_{-0.012}^{+0.014}$	$0.159_{-0.009}^{+0.011}$	-11.6 ± 1.7^{1}	P^{31}	10.12*	$1.300_{-0.065}^{+0.065}$	$8.5_{-0.9}^{+1.1}$
V1295 Aql	$0.086_{-0.022}^{+0.050}$	$0.119_{-0.030}^{+0.062}$	-25.60 ± 0.77^{3}	P^{3}	-0.09	$5.89_{-0.76}^{+0.80}$	$0.22_{-0.07}^{+0.11}$
V1478 Cyg	$0.03_{-0.03}^{+0.21}$	$0.02_{-0.02}^{+0.16}$	-	-	-	28_{-15}^{+4}	$0.010_{-0.000}^{+0.043}$
V1493 Cyg	$0.219_{-0.091}^{+0.065}$	$0.216_{-0.080}^{+0.058}$	-18.69 ± 0.48^{5}	-	7.82	$3.3_{-0.5}^{+1.1}$	$1.16_{-0.67}^{+0.73}$
V1685 Cyg	-	-	-147.2 ± 4.4^{7}	d^{7}	1.02	$9.1_{-1.8}^{+3.9}$	$0.10_{-0.07}^{+0.11}$
V1686 Cyg	-	-	-22.70 ± 0.68^{3}	d^{3}	-*	$2.855_{-0.55}^{+0.72}$	$1.2_{-0.6}^{+1.1}$
V1787 Ori	$0.239_{-0.059}^{+0.061}$	$0.309_{-0.059}^{+0.063}$	-21.16 ± 0.60^{27}	d^{21}	0.47	$1.659_{-0.083}^{+0.094}$	$7.4_{-1.1}^{+0.6}$
V1818 Ori	$0.054_{-0.022}^{+0.050}$	$0.16_{-0.06}^{+0.15}$	-45.7 ± 2.0^{27}	d^{21}	11.23	$5.3_{-1.1}^{+1.3}$	$0.37_{-0.19}^{+0.39}$
V1977 Cyg	$0.151_{-0.030}^{+0.037}$	$0.145_{-0.031}^{+0.040}$	-32.70 ± 0.98^{3}	d^{3}	3.91 *	$3.89_{-0.26}^{+0.35}$	$0.84_{-0.19}^{+0.19}$
V2019 Cyg	$0.040_{-0.012}^{+0.038}$	-0.031	-39.6 ± 1.6^{17}	s^{26}	1.37	$3.50_{-0.64}^{+0.48}$	$1.13_{-0.37}^{+0.91}$
V346 Ori	$0.108_{-0.021}^{+0.011}$	$\left(12.82_{-0.94}^{+0.29}\right) \cdot 10^{-2}$	-4.9 ± 1.4^{1}	P^{31}	0.07	$1.572_{-0.079}^{+0.079}$	$9.33_{-0.47}^{+0.47}$
V350 Ori	$0.124_{-0.012}^{+0.012}$	$0.142_{-0.010}^{+0.012}$	-12.6 ± 1.6^{1}	d^{3}	22.78*	$1.706_{-0.085}^{+0.094}$	$12.2{ }_{-4.7}^{+7.8}$
V351 Ori	$0.181_{-0.070}^{+0.023}$	$0.147_{-0.038}^{+0.013}$	-10.165 ± 0.050^{11}	d^{8}	2.29	$1.988_{-0.10}^{+0.19}$	$4.5_{-1.0}^{+0.2}$
V361 Cep	$\left(0.29_{-0.23}^{+0.31}\right) \cdot 10^{-2}$	$\left(0.45_{-0.12}^{+0.15}\right) \cdot 10^{-2}$	-32.6 ± 1.4^{5}	d^{8}	-0.21	$5.31_{-0.48}^{+0.69}$	$0.41_{-0.13}^{+0.15}$
V373 Cep	$0.27_{-0.09}^{+0.20}$	$1.12_{-0.35}^{+0.78}$	-69.9 ± 2.1^{3}	d^{3}	7.23*	$3.18_{-0.39}^{+0.51}$	$1.63_{-0.60}^{+0.75}$
V374 Cep	$\left(1.12_{-0.44}^{+0.67}\right) \cdot 10^{-2}$	$\left(1.69_{-0.52}^{+0.80}\right) \cdot 10^{-3}$	-63.4 ± 1.7^{7}	d^{7}	2.88	$6.8_{-0.9}^{+1.0}$	$0.188_{-0.065}^{+0.095}$
V380 Ori	$0.266_{-0.058}^{+0.078}$	$0.32_{-0.09}^{+0.12}$	-95.5 ± 1.4^{1}	s^{4}	1.28	$2.82_{-0.38}^{+0.59}$	$2.0_{-0.8}^{+1.0}$
V388 Vel	$0.23_{-0.05}^{+0.15}$	$1.09_{-0.18}^{+0.61}$	-	-	-	$4.1_{-0.9}^{+1.0}$	$0.68_{-0.35}^{+0.72}$
V431 Sct	$0.036_{-0.022}^{+0.048}$	$0.22_{-0.14}^{+0.14}$	-126 ± 31^{18}	d^{18}	2.10	$9.4_{-2.3}^{+4.5}$	$0.10_{-0.07}^{+0.50}$
V594 Cas	$0.29_{-0.13}^{+0.11}$	$0.29_{-0.13}^{+0.13}$	-80.7 ± 4.0^{22}	P^{22}	2.06	$2.944_{-0.23}^{+0.59}$	$1.899_{-0.78}^{+0.49}$
V594 Cyg	$0.82_{-0.37}^{+0.36}$	$0.065_{-0.033}^{+0.039}$	-	-	11.43	$8.7_{-18}^{+3.1}$	$0.075_{-0.046}^{+0.091}$
V599 Ori	$0.167_{-0.026}^{+0.028}$	$0.102_{-0.011}^{+0.011}$	-11.7 ± 1.5^{1}	d^{21}	3.69	$2.03_{-0.10}^{+0.10}$	$4.29_{-0.44}^{+0.42}$
V669 Cep	$0.066_{-0.020}^{+0.032}$	$0.30_{-0.08}^{+0.13}$	-132 ± 60^{19}	d^{19}	0.67	$4.00_{-0.48}^{+0.49}$	$0.96{ }_{-0.30}^{+0.44}$
V718 Sco	$0.136_{-0.026}^{+0.024}$	$0.180_{-0.019}^{+0.019}$	-6.2 ± 1.5^{1}	d^{21}	2.91*	$1.605_{-0.080}^{+0.080}$	$9.8{ }_{-0.5}^{+2.8}$
V921 Sco	$0.027_{-0.011}^{+0.024}$	$0.09_{-0.05}^{+0.12}$	-195 ± 19^{20}	d^{20}	3.49	$20.0_{-5.0}^{+7.0}$	$0.023_{-0.012}^{+0.026}$
VV Ser	$0.177_{-0.039}^{+0.041}$	$0.158_{-0.037}^{+0.040}$	-49.7 ± 1.5^{3}	d^{3}	-*	$2.89_{-0.14}^{+0.14}$	$2.8{ }_{-0.2}^{+8.1}$
VX Cas	$0.216_{-0.069}^{+0.049}$	$0.227_{-0.063}^{+0.045}$	-22.10 ± 0.66^{3}	d^{3}	11.70*	$1.88_{-0.09}^{+0.18}$	9_{-4}^{+11}

Table 3. continued.

Name	Near IR excess ($1.24-3.4 \mu \mathrm{~m}$)	Mid IR excess ($3.4-22 \mu \mathrm{~m}$)	H α EW (A)	$\begin{array}{r} \mathrm{H} \alpha \\ \text { line shape } \end{array}$	V_{i}	$\begin{aligned} & \text { Mass } \\ & \left(M_{\odot}\right) \end{aligned}$	$\begin{array}{r} \text { Age } \\ (\mathrm{Myr}) \end{array}$
WRAY 15-1435	$\left(0.57_{-0.29}^{+0.81}\right) \cdot 10^{-2}$	$\left(0.65_{-0.30}^{+0.80}\right) \cdot 10^{-2}$	-21.2 ± 1.0^{2}	s^{2}	1.54	$8.7_{-2.5}^{+2.9}$	$0.2_{-0.1}^{+1.2}$
WW Vul	$0.267_{-0.074}^{+0.060}$	$0.225_{-0.054}^{+0.044}$	-19.10 ± 0.57^{3}	d^{3}	3.47*	$1.955_{-0.10}^{+0.11}$	$5.088_{-0.71}^{+0.84}$
XY Per A	$0.216_{-0.045}^{+0.057}$	$0.165_{-0.039}^{+0.051}$	-9.80 ± 0.29^{3}	d^{3}	3.01	$2.82_{-0.20}^{+0.29}$	$1.955_{-0.44}^{+0.43}$

References. The $\mathrm{H} \alpha$ line profile classification is as follows: single-peaked (s), double-peaked (d) and showing a P-Cygni profile (P), both regular or inverse. An asterisk together with the variability indicator indicates that the source had been catalogued as UXOR type in the literature. References for EW values and line shapes: (1) Fairlamb et al. (2017); (2) Carmona et al. (2010); (3) Mendigutía et al. (2011a); (4) Ababakr et al. (2016); (5) Hernández et al. (2004); (6) Baines et al. (2006); (7) Wheelwright et al. (2010); (8) van den Ancker et al. (1998); (9) Oudmaijer \& Drew (1999); (10) Kučerová et al. (2013); (11) Hernández et al. (2005); (12) Dunkin et al. (1997); (13) Pogodin et al. (2012); (14) Miroshnichenko et al. (1999); (15) Sartori et al. (2010); (16) Polster et al. (2012); (17) Manoj et al. (2006); (18) Miroshnichenko et al. (2004); (19) Miroshnichenko et al. (2002); (20) Borges Fernandes et al. (2007); (21) Vieira et al. (2003); (22) Boehm \& Catala (1995); (23) Nakano et al. (2012); (24) Spezzi et al. (2008); (25) Hou et al. (2016); (26) Grinin \& Rostopchina (1996); (27) Vieira et al. (2011); (28) Acke et al. (2005); (29) Herbig \& Bell (1988); (30) Oudmaijer, et al. 1998); (31) X-Shooter spectra, 2015, priv. comm, from ESO observing program 084.C-0952A; (32) Ababakr et al. (2017); (33) Zuckerman et al. (2008); (34) Oudmaijer, et al. (1998); (35) Frasca et al. (2016); (36) Miroshnichenko et al. (1998); (37) Miroshnichenko et al. (2000).

Table 4. IR excess at each bandpass (defined as $\mathrm{F}_{\text {observed }} / \mathrm{F}_{\mathrm{CK}}$) for each Herbig $\mathrm{Ae} / \mathrm{Be}$ star belonging to the high quality sample of 218 sources.

Name	J	H	$\mathrm{K}_{\text {s }}$	W1	W2	W3	W4
	$1.24 \mu \mathrm{~m}$	$1.66 \mu \mathrm{~m}$	$2.16 \mu \mathrm{~m}$	$3.4 \mu \mathrm{~m}$	$4.6 \mu \mathrm{~m}$	$12 \mu \mathrm{~m}$	$22 \mu \mathrm{~m}$
AB Aur	2.79	6.01	13.23	28.77	-	240.49	2244.34
AK Sco	1.34	1.88	3.14	7.78	11.61	49.83	400.83
AS 310	0.68	0.71	0.81	-	-	-	-
AS 470	1.21	1.28	1.71	2.15	2.77	3.21	5.36
AS 477	2.00	-	-	27.30	59.04	104.62	475.86
BD+30 549	1.81	2.08	2.35	2.79	3.39	51.04	378.04
BD+41 3731	0.95	0.93	0.92	0.94	1.03	2.54	35.38
BF Ori	1.50	2.39	4.56	10.69	21.87	147.30	617.52
BH Cep	1.23	1.79	3.24	7.10	10.97	52.96	585.75
BO Cep	1.39	1.76	2.27	4.22	5.86	15.29	319.78
CO Ori	1.94	2.52	4.28	6.55	13.63	36.94	172.89
CPM 25	2.82	7.14	19.80	73.01	215.11	2106.36	13608.54
CQ Tau	1.06	1.92	4.31	8.63	19.75	150.12	1840.10
DG Cir	8.79	15.43	30.63	66.60	174.10	1164.79	11702.50
GSC 1876-0892	1.69	3.44	8.57	22.43	59.77	650.69	6589.47
GSC 3975-0579	1.54	2.90	7.03	21.27	36.92	79.38	933.24
GSC 6546-3156	1.57	1.91	2.37	6.11	10.31	717.95	5359.18
GSC 8143-1225	1.75	2.55	4.77	9.99	15.83	26.31	361.41
GSC 8581-2002	1.96	1.97	2.12	1.98	2.03	7.17	76.96
GSC 8645-1401	1.38	2.20	4.18	9.16	15.58	69.63	719.30
GSC 8994-3902	1.14	1.18	1.28	-	-	-	-
HBC 217	1.32	1.63	2.42	5.27	8.16	33.06	1021.50
HBC 222	1.30	1.64	2.74	6.10	9.02	18.50	323.71
HBC 334	2.04	2.72	3.52	10.86	20.90	788.83	11504.97
HBC 442	1.29	1.40	1.91	3.40	5.54	69.45	550.58
HBC 7	1.22	1.26	1.55	1.61	2.34	3.56	8.26
HBC 705	1.45	1.55	1.94	1.79	2.64	4.36	16.23
HD 100453	1.34	2.00	4.26	9.24	24.07	134.69	1857.99
HD 100546	1.34	2.09	3.64	10.62	21.19	490.87	7717.64
HD 101412	1.60	2.34	4.88	15.60	44.31	209.20	1006.20
HD 104237	1.50	2.40	4.60	8.98	21.58	84.07	367.56
HD 114981	1.23	1.24	1.34	1.41	1.39	1.32	4.53
HD 130437	2.19	2.56	3.24	4.23	5.85	8.52	32.43
HD 132947	1.30	1.42	1.54	-	-	-	-
HD 135344	0.56	0.47	0.49	0.49	0.52	0.56	46.31
HD 135344B	1.38	2.05	4.04	8.55	17.29	16.84	420.92
HD 139614	1.39	1.76	3.16	6.59	12.20	150.84	2119.75
HD 141569	1.29	1.32	1.45	2.77	2.69	6.48	102.87
HD 141926	1.59	1.80	2.31	3.01	4.38	5.53	18.99
HD 142527	2.45	4.16	8.24	15.15	36.02	158.75	1216.10
HD 142666	1.64	2.50	4.63	9.18	20.00	170.41	908.47
HD 143006	1.22	1.50	2.56	7.36	14.36	24.41	365.00
HD 144432	1.86	2.85	5.34	8.29	17.05	146.13	837.23
HD 149914	1.30	1.33	1.42	1.36	1.50	1.06	5.65
HD 150193	1.90	3.19	6.08	12.60	28.58	194.31	980.17
HD 155448	-	0.94	0.94	-	-	-	-
HD 158643	0.97	1.17	1.80	3.31	-	26.38	72.09
HD 163296	1.81	3.36	7.07	17.49	37.20	202.40	853.49

Table 4. continued.

Name	J	H	K_{s}	W1	W2	W3	W4
	$1.24 \mu \mathrm{~m}$	$1.66 \mu \mathrm{~m}$	$2.16 \mu \mathrm{~m}$	$3.4 \mu \mathrm{~m}$	$4.6 \mu \mathrm{~m}$	$12 \mu \mathrm{~m}$	$22 \mu \mathrm{~m}$
HD 169142	1.28	1.72	2.71	2.86	4.77	48.62	1212.98
HD 17081	1.08	1.10	1.11	1.06	1.27	0.69	1.56
HD 174571	0.99	1.02	1.08	0.67	0.72	0.76	4.03
HD 176386	1.73	1.77	2.04	3.89	3.54	-	1703.78
HD 179218	1.04	1.37	2.54	6.64	16.19	289.90	1956.36
HD 199603	0.98	0.95	1.03	0.97	1.14	0.61	0.76
HD 200775	2.25	3.98	8.36	25.21	-	149.52	2914.79
HD 235495	3.04	6.46	14.38	36.37	74.80	332.15	1821.12
HD 244314	1.70	2.81	5.47	13.82	22.29	143.73	778.93
HD 244604	1.78	3.20	7.17	11.50	23.27	137.15	839.31
HD 245185	1.91	3.16	6.58	17.93	36.27	705.27	4958.59
HD 249879	1.31	1.92	5.02	23.39	59.15	474.67	2392.06
HD 250550	3.11	7.68	18.39	44.57	97.12	614.45	6073.51
HD 259431	2.08	4.10	9.61	27.60	94.90	305.32	2145.16
HD 287823	1.29	1.99	4.48	12.55	24.20	76.66	1144.68
HD 288012	0.63	0.59	0.64	-	-	-	-
HD 290380	1.41	2.12	3.72	7.95	12.64	51.05	701.84
HD 290409	1.67	2.42	4.04	4.53	6.53	219.21	3060.97
HD 290500	2.10	2.82	4.14	12.80	20.09	100.80	2143.13
HD 290764	1.71	2.95	6.34	15.76	28.69	70.06	1819.14
HD 290770	2.15	4.07	9.14	19.26	34.92	200.05	1406.43
HD 305298	1.46	1.65	1.70	2.63	4.76	271.40	12010.35
HD 313571	1.86	2.18	2.65	4.29	4.69	10.16	152.52
HD 31648	1.60	2.68	5.49	9.48	22.53	120.18	611.63
HD 319896	1.43	1.61	1.98	5.75	9.81	22.37	414.03
HD 323771	2.54	5.90	13.58	38.02	76.64	312.52	2185.92
HD 34282	1.82	3.78	8.31	17.85	28.81	104.86	1196.27
HD 344261	1.15	1.24	1.24	1.23	1.20	0.81	-
HD 34700	1.00	1.02	1.24	-	-	-	-
HD 35187	1.90	2.74	4.65	7.72	13.40	59.77	569.45
HD 35929	1.35	1.47	1.97	3.06	5.72	12.01	29.45
HD 36112	1.63	2.71	5.61	14.70	31.22	99.40	992.76
HD 36408	1.06	1.01	1.02	0.79	0.81	0.74	8.02
HD 36917	1.77	2.20	2.98	8.99	20.56	84.71	264.73
HD 36982	1.80	2.02	2.38	-	-	-	-
HD 37258	1.97	3.27	6.62	15.84	28.99	189.17	970.64
HD 37357	1.54	2.36	4.22	7.84	14.86	102.39	696.70
HD 37371	0.35	0.36	0.35	0.32	0.40	0.77	7.26
HD 37490	0.88	1.02	1.19	2.35	4.17	3.60	7.30
HD 37806	2.20	4.90	10.98	22.93	60.67	293.60	1185.58
HD 38087	2.01	2.45	2.77	2.94	2.84	2.04	275.15
HD 38120	1.80	3.11	6.10	10.25	20.61	658.25	5227.02
HD 39014	0.98	1.15	1.17	1.26	1.75	0.82	1.00
HD 41511	4.36	8.56	12.99	-	-	89.68	289.86
HD 45677	3.19	7.44	32.20	-	-	4700.04	28602.62
HD 46060	0.79	0.75	0.74	0.80	0.77	3.47	171.16
HD 50083	1.23	1.34	1.70	2.17	3.60	4.74	22.96
HD 50138	2.13	4.29	10.45	26.11	-	444.08	2375.59
HD 56895B	1.12	1.07	1.19	-	-	-	-

Table 4. continued.

Name	J	H	$\mathrm{K}_{\text {s }}$	W1	W2	W3	W4
	$1.24 \mu \mathrm{~m}$	$1.66 \mu \mathrm{~m}$	$2.16 \mu \mathrm{~m}$	$3.4 \mu \mathrm{~m}$	$4.6 \mu \mathrm{~m}$	$12 \mu \mathrm{~m}$	$22 \mu \mathrm{~m}$
HD 58647	1.29	1.73	3.27	8.58	27.12	39.00	105.20
HD 59319	1.15	1.11	1.16	1.24	1.21	0.88	129.98
HD 68695	1.53	2.61	5.20	15.95	26.36	96.34	1314.61
HD 76534	1.31	1.31	1.40	2.21	2.55	3.90	29.05
HD 85567	1.87	3.74	8.55	22.94	58.45	209.67	836.94
HD 87403	1.35	1.36	1.49	1.67	1.76	1.15	10.21
HD 87643	3.76	13.14	41.40	-	-	2278.72	12716.58
HD 94509	1.28	1.40	1.53	2.17	2.55	3.48	17.17
HD 95881	2.28	4.48	10.93	33.15	86.18	295.79	1007.97
HD 96042	1.47	1.45	1.71	1.48	1.49	1.66	45.46
HD 9672	1.04	1.00	1.12	1.05	1.22	0.79	3.97
HD 97048	1.84	3.01	5.88	19.83	20.04	239.06	3219.89
HD 98922	2.15	4.46	11.09	-	-	352.13	1148.15
HR 5999	1.59	2.82	6.25	-	-	112.50	414.85
HT CMa	4.29	9.27	20.90	64.36	148.82	983.40	5396.58
HU CMa	1.58	3.04	7.04	20.04	42.48	535.48	3456.52
Hen 3-1121	1.73	4.13	10.01	26.17	62.07	699.79	6435.45
Hen 3-1121S	0.87	0.82	0.85	0.87	1.24	29.55	1962.39
Hen 3-1191	4.48	21.19	98.70	510.27	1995.88	10315.68	37787.17
Hen 3-823	1.35	1.45	1.73	2.15	2.63	3.62	9.41
Hen 3-847	1.38	2.77	12.52	127.89	761.32	9538.41	58854.42
Hen 3-938	2.93	8.65	27.33	69.17	213.51	823.51	3658.69
IL Cep	0.85	0.84	0.89	0.92	1.12	1.12	-
IP Per	1.80	3.18	6.85	15.40	27.39	36.94	645.90
KK Oph	3.04	12.33	41.94	102.96	243.95	1149.69	4781.29
LKHa 260	1.49	3.11	-	22.31	53.84	388.18	312.56
LKHa 338	4.59	11.05	38.14	193.55	635.30	6577.01	38467.51
LkHa 208	1.73	2.31	4.08	12.66	43.63	1204.97	7023.91
LkHa 215	2.25	4.00	7.74	27.52	53.10	183.08	1801.94
LkHa 257	1.55	2.63	4.83	8.08	13.28	58.14	1381.77
LkHa 259	2.90	3.65	5.33	10.63	24.83	580.94	10317.88
LkHa 324	-	1.06	1.13	1.61	2.73	73.32	653.45
LkHa 339	0.75	1.07	2.15	5.96	13.88	243.18	2014.27
MQ Cas	5.39	19.10	58.45	-	-	-	-
MWC 1021	1.54	1.76	2.77	-	-	37.54	74.27
MWC 1080	3.17	8.57	20.05	-	-	579.77	2359.22
MWC 137	1.94	3.25	8.25	30.58	86.52	328.65	3052.44
MWC 297	1.55	3.71	8.52	-	-	280.89	4022.76
MWC 342	2.99	6.55	15.48	-	-	717.92	3665.94
MWC 593	1.61	1.83	2.24	-	-	-	-
MWC 655	3.26	4.01	6.05	5.07	6.92	41.93	1084.04
MWC 657	1.41	2.98	6.76	18.91	66.61	242.44	800.51
MWC 878	1.61	2.72	7.30	43.34	157.49	976.37	2629.98
MWC 953	1.26	1.42	1.65	1.99	2.20	3.13	102.09
NSV 2968	2.31	4.35	10.22	12.67	41.90	297.56	2246.08
NV Ori	1.19	1.64	2.92	5.05	8.88	88.23	553.15
PDS 002	1.08	1.24	1.76	3.39	4.95	51.00	718.19
PDS 004	1.43	2.17	3.79	7.57	15.55	160.54	1084.87
PDS 021	1.93	4.07	8.97	18.07	41.18	595.37	4130.11

Table 4. continued.

Name	J	H	K_{s}	W1	W2	W3	W4
	$1.24 \mu \mathrm{~m}$	$1.66 \mu \mathrm{~m}$	$2.16 \mu \mathrm{~m}$	$3.4 \mu \mathrm{~m}$	$4.6 \mu \mathrm{~m}$	$12 \mu \mathrm{~m}$	$22 \mu \mathrm{~m}$
PDS 022	1.21	1.48	2.47	6.19	13.77	340.58	4104.11
PDS 025	3.07	6.73	15.36	37.43	63.06	373.77	3752.05
PDS 123	2.58	6.31	14.05	32.32	65.17	326.20	2513.33
PDS 124	1.69	2.51	4.95	15.08	30.21	456.06	2857.71
PDS 126	1.51	2.16	4.09	8.08	14.23	79.11	390.36
PDS 129	1.38	1.58	2.17	3.86	6.50	78.22	630.91
PDS 130	2.13	4.13	8.84	22.69	45.11	500.19	3967.51
PDS 133	2.13	6.27	16.14	23.84	77.26	645.47	6061.49
PDS 134	1.79	1.90	2.09	-	-	-	-
PDS 138	1.20	1.20	1.24	-	-	-	-
PDS 174	2.24	3.43	5.38	12.27	26.19	537.78	29319.27
PDS 211	1.35	2.16	4.29	7.32	18.45	433.58	3154.52
PDS 24	2.15	3.93	8.37	18.41	38.89	852.57	9838.27
PDS 241	1.30	1.51	1.86	7.04	19.17	5641.92	83493.60
PDS 27	1.78	4.54	12.10	31.59	134.49	1091.96	7522.03
PDS 277	1.23	1.54	2.80	6.42	10.08	70.34	1354.70
PDS 286	1.73	1.85	2.39	0.99	1.33	1.82	21.31
PDS 290	0.64	0.67	0.76	0.63	0.61	1.88	111.26
PDS 297	1.12	1.12	1.15	1.13	1.16	1.11	18.69
PDS 324	1.34	1.53	1.79	-	-	-	-
PDS 33	1.80	2.83	4.94	11.66	21.41	458.11	4167.59
PDS 34	2.61	5.93	14.05	31.75	63.65	605.75	7602.75
PDS 344	1.78	2.17	2.65	4.71	8.69	390.97	3434.61
PDS 361S	2.87	3.39	3.74	5.80	6.63	4.67	-
PDS 37	0.71	2.38	6.48	18.45	55.76	526.99	4328.48
PDS 389	1.55	2.02	3.23	4.82	8.86	38.90	328.32
PDS 415N	0.92	1.14	1.62	4.08	9.07	21.21	332.90
PDS 431	1.41	1.41	1.55	1.50	1.54	31.35	-
PDS 469	1.44	1.85	2.61	4.02	6.10	214.67	1185.71
PDS 477	3.47	9.52	24.09	61.85	129.93	1201.43	9937.68
PDS 520	4.96	8.63	18.99	41.85	94.93	429.65	3731.82
PDS 543	0.71	0.62	0.65	0.76	1.94	19.23	572.04
PDS 69	1.15	2.19	4.42	-	-	-	-
PX Vul	1.75	2.68	4.57	10.61	18.18	46.64	341.19
RR Tau	1.23	3.42	8.44	24.63	48.23	156.34	996.01
RY Ori	1.35	1.63	2.70	4.49	7.27	58.82	358.89
SAO 185668	0.87	0.85	0.84	0.82	1.01	25.56	881.06
SAO 220669	1.43	1.43	1.46	1.65	1.56	3.78	251.64
SV Cep	2.62	5.05	10.71	23.65	49.17	743.44	4567.70
T Ori	2.65	5.88	14.38	35.54	52.41	192.59	1528.40
TY CrA	1.59	2.16	2.66	5.32	14.92	3250.79	6107.38
UX Ori	2.89	4.96	10.85	23.75	46.70	338.18	2472.27
V1012 Ori	1.42	2.75	5.85	10.93	20.05	94.49	1839.69
V1295 Aql	1.30	2.07	4.38	11.48	29.27	118.54	396.22
V1478 Cyg	2.70	4.71	13.20	-	-	202.01	860.06
V1493 Cyg	2.39	3.92	7.04	16.28	35.08	197.28	900.73
V1685 Cyg	1.67	3.51	7.74	-	-	-	3124.43
V1686 Cyg	3.11	9.36	28.85	-	-	-	-
V1787 Ori	2.03	3.14	6.49	15.63	33.22	236.07	1369.96

Table 4. continued.

Name	J	H	K_{s}	W 1	W 2	W 3	W 4
	$1.24 \mu \mathrm{~m}$	$1.66 \mu \mathrm{~m}$	$2.16 \mu \mathrm{~m}$	$3.4 \mu \mathrm{~m}$	$4.6 \mu \mathrm{~m}$	$12 \mu \mathrm{~m}$	$22 \mu \mathrm{~m}$
V1818 Ori	0.36	1.94	7.77	28.86	86.74	453.29	2698.23
V1977 Cyg	2.09	4.14	10.33	25.91	66.33	153.92	794.03
V2019 Cyg	1.36	1.88	3.05	6.09	10.78	-	6223.77
V346 Ori	1.14	1.69	3.15	9.45	15.76	44.81	776.76
V350 Ori	1.28	2.45	5.47	11.91	20.34	133.53	1164.99
V351 Ori	1.73	2.44	4.68	11.46	22.68	44.22	691.22
V361 Cep	1.08	1.20	1.42	2.00	2.93	6.86	1741.54
V373 Cep	3.30	8.69	21.53	139.91	732.16	2133.92	42216.18
V374 Cep	1.57	1.83	2.42	1.98	2.76	4.93	27.19
V380 Ori	2.31	5.36	12.67	27.79	74.38	387.31	1548.31
V388 Vel	1.34	3.55	9.33	40.19	94.40	1665.31	21691.47
V431 Sct	1.34	2.96	15.27	129.70	-	4848.99	34190.80
V594 Cas	3.39	8.94	21.62	49.46	113.26	522.05	2764.98
V594 Cyg	26.23	29.73	43.29	25.55	34.83	54.10	169.97
V599 Ori	1.70	2.62	5.27	6.94	12.85	41.44	959.30
V669 Cep	1.83	3.48	10.37	44.40	174.02	2080.63	9413.59
V718 Sco	1.72	2.24	3.81	7.66	16.83	155.15	707.61
V921 Sco	3.58	8.44	24.92	-	-	3378.91	57901.14
VV Ser	3.57	8.83	21.97	46.08	121.07	428.03	1766.30
VX Cas	2.00	4.62	11.25	27.13	45.17	276.95	2735.55
WRAY 15-1435	2.24	2.88	3.34	4.39	7.36	192.05	3602.51
WW Vul	2.19	4.60	10.53	17.32	32.02	231.68	1366.23
XY Per A	2.61	4.51	9.33	21.53	47.11	131.33	670.35

Table 5. Main parameters of each Herbig Ae/Be star belonging to the low quality sample of 34 sources.

Name	$\begin{array}{r} \mathrm{RA} \\ (\mathrm{~h}: \mathrm{m}: \mathrm{s}) \end{array}$	$\begin{array}{r} \text { DEC } \\ (\mathrm{deg}: \mathrm{m}: \mathrm{s}) \end{array}$	$\begin{array}{r} \text { Parallax } \\ \text { (mas) } \end{array}$	Distance (pc)	$\mathrm{T}_{\text {eff }}$ (K)	$\log (\mathrm{L})$ $\left(L_{\odot}\right)$	$\begin{array}{r} \mathrm{A}_{\mathrm{V}} \\ (\mathrm{mag}) \end{array}$	$\begin{array}{r} \mathrm{V} \\ (\mathrm{mag}) \end{array}$	Binary
BP Psc	23:22:24.7	-02:13:42	2.79 ± 0.39	$350{ }_{-50}^{+110}$	5350_{-70}^{+80}	$0.73{ }_{-0.23}^{+0.34}$	$0.83{ }_{-0.24}^{+0.25}$	11.53	-
DK Cha	12:53:17.1	-77:07:11	4.10 ± 0.37	$243-28$	7250_{-130}^{+130}	$0.47_{-0.16}^{+0.20}$	$8.12_{-0.14}^{+0.11}$	18.54	-
GSC 5360-1033	05:57:49.5	-14:05:34	1.649 ± 0.034	605_{-19}^{+22}	15000_{-1000}^{+800}	$1.01_{-0.30}^{+0.27}$	$1.600_{-0.50}^{+0.50}$	13.91	Yes ${ }^{29}$
GSC 5988-2257	07:41:41.1	-20:00:13	-4.66 ± 0.86	980_{-270}^{+520}	16500_{-800}^{+3000}	$1.52_{-0.39}^{+0.63}$	$3.18{ }_{-0.15}^{+0.23}$	15.52	-
GSC 6542-2339	07:24:37.0	-24:34:47	1.12 ± 0.11	8500_{-100}^{+160}	32900_{-3900}^{+2000}	$3.03_{-0.29}^{+0.27}$	$5.24_{-0.18}^{+0.14}$	15.12	-
HBC 1	00:07:02.6	+65:38:38	0.16 ± 0.52	760_{-190}^{+440}	8150_{-160}^{+180}	$-0.65_{-0.32}^{+0.47}$	$1.05_{-0.16}^{+0.19}$	16.76	-
HBC 324	00:07:30.7	+65:39:53	-0.27 ± 0.47	900_{-220}^{+470}	7830_{-220}^{+160}	$0.80_{-0.35}^{+0.47}$	$2.51{ }_{-0.25}^{+0.25}$	14.94	-
HBC 694	20:24:29.5	$+42: 14: 02$	0.90 ± 0.43	670_{-150}^{+370}	8150_{-160}^{+180}	$-0.50_{-0.43}^{+0.58}$	$1.933_{-0.50}^{+0.50}$	17.00	-
HBC 717	20:52:06.0	$+44: 17: 16$	0.49 ± 0.12	1390_{-220}^{+390}	6400_{-150}^{+150}	$1.88{ }_{-0.23}^{+0.32}$	$2.82_{-0.20}^{+0.27}$	13.55	-
HD 245906	05:39:30.5	$+26: 19: 55$	0.67 ± 0.48	690_{-170}^{+400}	7990_{-160}^{+160}	$1.666_{-0.44}^{+0.46}$	$0.855_{-0.15}^{+0.16}$	10.55	Yes ${ }^{2}$
HD 53367	07:04:25.5	-10:27:16	7.77 ± 0.79	130_{-17}^{+30}	29500_{-1000}^{+1000}	$3.13_{-0.17}^{+0.23}$	$2.051_{-0.050}^{+0.043}$	7.36	Yes ${ }^{4}$
HD 72106B	08:29:34.9	-38:36:21	0.03 ± 0.83	600_{-170}^{+430}	8750_{-250}^{+250}	$1.85{ }_{-0.38}^{+0.53}$	$0.511_{-0.21}^{+0.13}$	9.50	Yes ${ }^{20}$
Hen 2-80	12:22:23.2	-63:17:17	0.71 ± 0.38	7500_{-170}^{+390}	14000_{-1000}^{+1000}	$2.12_{-0.37}^{+0.49}$	$2.97{ }_{-0.18}^{+0.16}$	12.79	-
MWC 314	19:21:34.0	+14:52:57	0.191 ± 0.042	2980_{-370}^{+550}	16500_{-800}^{+3000}	$5.29_{-0.37}^{+0.52}$	$4.50{ }_{-0.50}^{+0.50}$	9.80	Yes ${ }^{31}$
MWC 623	19:56:31.5	+31:06:20	0.173 ± 0.036	3280_{-390}^{+570}	15800_{-1000}^{+1000}	$4.588_{-0.25}^{+0.28}$	$3.77{ }_{-0.17}^{+0.19}$	10.92	Yes ${ }^{21}$
MWC 930	18:26:25.2	-07:13:18	-0.162 ± 0.094	2590_{-420}^{+650}	11900_{-1400}^{+1700}	$5.85{ }_{-0.39}^{+0.39}$	$8.72_{-0.31}^{+0.18}$	11.51	-
NX Pup	07:19:28.3	-44:35:11	-9.84 ± 0.65	1670_{-380}^{+630}	7000_{-250}^{+250}	$2.46{ }_{-0.22}^{+0.30}$	$0.000_{-0.000}^{+0.070}$	9.63	Yes ${ }^{4}$
PDS 144S	15:49:15.3	-26:00:55	6.69 ± 0.12	$149.6_{-4.2}^{+4.6}$	7750_{-250}^{+250}	$-0.673_{-0.057}^{+0.057}$	$0.570_{-0.080}^{+0.070}$	12.79	-
PDS 229N	06:55:40.0	-03:09:50	-0.52 ± 0.53	880_{-220}^{+470}	12500_{-250}^{+250}	$1.70_{-0.32}^{+0.44}$	$2.13{ }_{-0.12}^{+0.12}$	13.07	Yes ${ }^{22}$
PDS 322	10:52:08.7	-56:12:07	-1.30 ± 0.27	1730_{-360}^{+610}	19500_{-3000}^{+5000}	$2.888_{-0.47}^{+0.60}$	$1.39_{-0.23}^{+0.29}$	11.97	-
PDS 364	13:20:03.6	-62:23:54	-0.39 ± 0.12	2430_{-420}^{+660}	12500_{-1000}^{+1000}	$2.32_{-0.26}^{+0.31}$	$1.870_{-0.030}^{+0.050}$	13.46	-
PDS 371	13:47:31.4	-36:39:50	9.87 ± 0.21	$101.4_{-3.4}^{+3.8}$	32900_{-3900}^{+2000}	$0.98{ }_{-0.21}^{+0.15}$	$5.16_{-0.18}^{+0.14}$	15.55	-
PDS 453	17:20:56.1	-26:03:31	5.70 ± 0.57	$176{ }_{-22}^{+40}$	7000_{-250}^{+120}	$-0.43_{-0.23}^{+0.27}$	$1.444_{-0.29}^{+0.25}$	13.41	-
PDS 530	18:41:34.4	+08:08:21	0.27 ± 0.17	1390_{-260}^{+470}	8150_{-160}^{+180}	$1.35{ }_{-0.24}^{+0.33}$	$1.53{ }_{-0.16}^{+0.19}$	13.54	-
PDS 551	18:55:23.0	+04:04:35	1.99 ± 0.12	$496{ }_{-42}^{+58}$	29000_{-4500}^{+390}	$0.933_{-0.43}^{+0.41}$	$2.90_{-0.50}^{+0.50}$	16.60	-
PDS 581	19:36:18.9	$+29: 32: 50$	0.96 ± 0.38	690_{-150}^{+350}	$24500{ }_{-5000}^{+4500}$	$2.89_{-0.56}^{+0.62}$	$2.633_{-0.29}^{+0.26}$	11.75	-
PV Cep	20:45:54.0	+67:57:39	2.910 ± 0.059	343_{-11}^{+12}	8150_{-160}^{+180}	$0.00_{-0.09}^{+0.11}$	$5.12_{-0.16}^{+0.19}$	17.46	-
R CrA	19:01:53.7	-36:57:09	10.54 ± 0.70	95_{-9}^{+13}	8150_{-160}^{+180}	$-0.06_{-0.15}^{+0.19}$	$2.13{ }_{-0.16}^{+0.19}$	11.85	-
UY Ori	05:32:00.3	-04:55:54	2.811 ± 0.082	355_{-16}^{+18}	9750_{-250}^{+250}	$0.394_{-0.059}^{+0.072}$	$1.110_{-0.000}^{+0.020}$	12.79	-
V590 Mon	06:40:44.6	+09:48:02	1.14 ± 0.13	820_{-100}^{+170}	12500_{-1000}^{+1000}	$1.388_{-0.21}^{+0.26}$	$1.030_{-0.050}^{+0.040}$	12.60	Yes ${ }^{2}$
V645 Cyg	21:39:58.3	$+50: 14: 21$	0.53 ± 0.40	790_{-180}^{+410}	36900_{-2000}^{+2000}	$3.600_{-0.34}^{+0.48}$	$4.51_{-0.12}^{+0.12}$	13.10	-
V892 Tau	04:18:40.6	$+28: 19: 15$	8.52 ± 0.12	$117.5_{-2.5}^{+2.7}$	11500_{-800}^{+1500}	$0.13_{-0.28}^{+0.33}$	$4.87{ }_{-0.50}^{+0.50}$	15.17	Yes ${ }^{5}$
VY Mon	06:31:06.9	+10:26:05	-1.94 ± 0.38	1470_{-330}^{+580}	12000_{-4000}^{+4000}	$3.56_{-0.68}^{+0.64}$	$5.68{ }_{-0.45}^{+0.17}$	12.97	-
Z CMa	07:03:43.2	-11:33:06	4.30 ± 0.89	230_{-50}^{+150}	8500_{-500}^{+500}	$2.25_{-0.29}^{+0.51}$	$3.37_{-0.16}^{+0.12}$	9.25	Yes ${ }^{1}$

References. Atmospheric parameters $\mathrm{T}_{\text {eff }}, \mathrm{A}_{\mathrm{y}}$ and V taken from the following sources in order of choice: Fairlamb et al. 2015; Montesinos et al. 2009; Hernández et al. 2004; Mendigutía et al. 2012; Carmona et al. 2010; Chen et al. 2016; Alecian et al. 2013; Sartori et al. 2010; Manoj et al. 2006; Hernández et al. 2005; Vieira et al. 2003; APASS Data Release 9 and the SIMBAD database. If not available they were derived as described in Sect. 2.2. See Sect. 3 for derivation of L, Mass and Age. The references for binarity are: (1) Baines et al. (2006); (2) Wheelwright et al. (2010); (3) Leinert et al. (1997); (4) Maheswar et al. (2002); (5) Wheelwright et al. (2011); (6) Alecian et al. (2013); (7) Hamaguchi et al. (2008); (8) Dunhill et al. (2015); (9) Coulson \& Walther (1995); (10) Liu et al. (2000); (11) Biller et al. (2012); (12) Schütz et al. (2011); (13) Boersma et al. (2009); (14) Malkov et al. (2006); (15) Arellano Ferro \& Giridhar (2003); (16) Kubát et al. (2010); (17) Morrell \& Levato (1991); (18) Lazareff et al. (2017); (19) Mayer et al. (2016); (20) Folsom et al. (2008); (21) Corporon \& Lagrange (1999); (22) Doering \& Meixner (2009); (23) Chelli et al. (1995); (24) Miroshnichenko et al. (2002); (25) Friedemann et al. (1996); (26) Kraus et al. (2012); (27) Torres et al. (2000); (28) Aspin (1998); (29) Connelley et al. (2008); (30) Millour et al. (2009); (31) Frasca et al. (2016); (32) Marston \& McCollum (2008); (33) Zhang et al. (2017).

Table 6. Other parameters of each Herbig Ae/Be star belonging to the low quality sample of 34 sources.

Name	Near IR excess $(1.24-3.4 \mu \mathrm{~m})$	Mid IR excess ($3.4-22 \mu \mathrm{~m}$)	H α EW (A)	$\begin{array}{r} \mathrm{H} \alpha \\ \text { line shape } \end{array}$	V_{i}	Mass $\left(M_{\odot}\right)$	$\begin{gathered} \text { Age } \\ (\mathrm{Myr}) \end{gathered}$
BP Psc	$0.46_{-0.19}^{+0.24}$	$0.81_{-0.21}^{+0.27}$	-14.83 ± 0.35^{33}	-	-	$1.90_{-0.26}^{+0.50}$	$1.7_{-1.0}^{+1.6}$
DK Cha	$8.0_{-1.5}^{+2.2}$	$12.6_{-3.0}^{+4.5}$	-95.3 ± 4.4^{24}	-	-	$1.369_{-0.068}^{+0.068}$	$17.2_{-3.6}^{+2.8}$
GSC 5360-1033	-1.5	-3.0	-9.36 ± 0.20^{15}	d^{21}	-	-0.068	-3.6
GSC 5988-2257	$0.077_{-0.037}^{+0.028}$	$0.147_{-0.068}^{+0.049}$	-19.83 ± 0.75^{27}	d^{21}	-	-	-
GSC 6542-2339	.077	-	-28.0 ± 1.2^{15}	d^{21}	-	-	-
HBC 1	83_{-17}^{+19}	$237{ }_{-51}^{+58}$	-40.2 ± 3.1^{29}	-	-	-	-
HBC 324	$0.124_{-0.053}^{+0.062}$	$1.11_{-0.24}^{+0.31}$	-26.16 ± 0.84^{5}	-	-	$1.500_{-0.07}^{+0.29}$	$13.2{ }_{-7.3}^{+6.8}$
HBC 694	$0.99_{-0.41}^{+0.68}$	$2.9_{-1.1}^{+1.9}$	-	-	-	-0.0	-
HBC 717	$0.32_{-0.12}^{+0.12}$	$0.44_{-0.11}^{+0.11}$	-23.59 ± 0.95^{5}	-	-	$3.4_{-0.5}^{+1.0}$	$0.88_{-0.50}^{+0.52}$
HD 245906	$0.145_{-0.037}^{+0.066}$	$0.091_{-0.015}^{+0.027}$	-12.80 ± 0.18^{5}	P^{26}	-	$2.4_{-0.5}^{+1.1}$	$2.8_{-1.8}^{+2.7}$
HD 53367	$\left(0.79_{-0.21}^{+0.27}\right) \cdot 10^{-3}$	$\left(0.42_{-0.08}^{+0.11}\right) \cdot 10^{-3}$	-14.00 ± 0.70^{1}	d^{21}	-	-0.5	-1.8
HD 72106B	$0.077_{-0.020}^{+0.033}$	$0.114_{-0.018}^{+0.031}$	-5.8 ± 1.6^{1}	s^{21}	-	$2.7_{-0.7}^{+1.5}$	$2.1{ }_{-1.5}^{+2.6}$
Hen 2-80	$0.146_{-0.045}^{+0.070}$	$0.51_{-0.15}^{+0.24}$	-155.5 ± 7.5^{2}	d^{2}	-	$3.07_{-0.39}^{+0.90}$	$2.2_{-1.3}^{+8.7}$
MWC 314	$0.017_{-0.012}^{+0.021}$	$\left(0.27_{-0.18}^{+0.32}\right) \cdot 10^{-2}$	-130 ± 15^{35}	d^{36}	-	$24.6_{-1.2}^{+1.2}$	$\left(10.00_{-0.50}^{+0.80}\right) \cdot 10^{-3}$
MWC 623	$0.084_{-0.028}^{+0.042}$	$0.057_{-0.024}^{+0.043}$	-134 ± 14^{16}	s^{16}	-	$18.2_{-3.1}^{+4.7}$	$0.015_{-0.005}^{+0.010}$
MWC 930	-	-	-	-	-	-	-
NX Pup	$0.788_{-0.15}^{+0.11}$	$1.25_{-0.27}^{+0.26}$	-54.0 ± 3.0^{1}	d^{8}	-*	$5.0_{-0.7}^{+1.4}$	$0.28_{-0.17}^{+0.20}$
PDS 144S	$2.888_{-0.39}^{+0.34}$	$6.0_{-0.9}^{+1.1}$	-29.2 ± 1.5^{1}	s^{31}	-	-0,	-
PDS 229N	$0.044_{-0.012}^{+0.012}$	$0.057_{-0.009}^{+0.011}$	-2.2 ± 1.3^{1}	P^{21}	-	$2.51_{-0.13}^{+0.47}$	5_{-3}^{+13}
PDS 322	$\left(0.23_{-0.23}^{+0.34}\right) \cdot 10^{-2}$	$0.029_{-0.016}^{+0.025}$	3.792 ± 0.020^{15}	-	-	$5.4_{-1.5}^{+2.6}$	$1.1_{-0.9}^{+5.3}$
PDS 364	$0.104_{-0.023}^{+0.026}$	$0.227_{-0.049}^{+0.057}$	-88.0 ± 1.2^{1}	d^{21}	-	$3.30_{-0.50}^{+0.90}$	$1.455_{-0.75}^{+0.75}$
PDS 371	$\left(0.53_{-0.16}^{+0.33}\right) \cdot 10^{-2}$	$\left(0.66_{-0.17}^{+0.36}\right) \cdot 10^{-2}$	-43.0 ± 2.0^{27}	s^{21}	-	-0.50	-0.7
PDS 453	$0.50_{-0.15}^{+0.22}$	$0.73_{-0.17}^{+0.25}$	-1.42 ± 0.20^{15}	d^{21}	-*	-	-
PDS 530	$0.47_{-0.10}^{+0.10}$	$1.37_{-0.25}^{+0.25}$	-37.2 ± 1.4^{15}	s^{21}	-	$1.89_{-0.23}^{+0.52}$	$5.2_{-2.4}^{+2.2}$
PDS 551	$0.34_{-0.18}^{+0.45}$	$0.8_{-0.4}^{+1.0}$	-51.2 ± 2.5^{15}	d^{21}	-	-0.23	-2.4
PDS 581	$0.061_{-0.030}^{+0.087}$	$0.25_{-0.14}^{+0.43}$	-201 ± 10^{15}	s^{21}	-	$5.4{ }_{-0.3}^{+2.9}$	$0.6_{-0.4}^{+1.1}$
PV Cep	$4.7_{-1.0}^{+1.2}$	24.7 ${ }_{-5.7}^{+6.6}$	-59.1 ± 2.5^{28}	P^{28}	-	-0.3	-0.4
R CrA	$16.6_{-5.2}^{+7.1}$	23_{-8}^{+12}	-94.7 ± 4.3^{17}	d^{26}	-	-	-
UY Ori	$0.231_{-0.021}^{+0.018}$	$0.930_{-0.072}^{+0.058}$	-10.3 ± 1.6^{1}	P^{31}	-	-	-
V590 Mon	$0.131_{-0.028}^{+0.037}$	$0.53_{-0.11}^{+0.15}$	-69.7 ± 1.1^{1}	d^{31}	-	$2.30_{-0.11}^{+0.13}$	6_{-1}^{+14}
V645 Cyg	$\left(0.97_{-0.28}^{+0.39}\right) \cdot 10^{-2}$	$0.119_{-0.046}^{+0.078}$	-125 ± 12^{17}	d^{28}	-	-0.1	-
V892 Tau	$1.7{ }_{-0.9}^{+1.6}$	$3.9{ }_{-2.1}^{+3.6}$	-24.47 ± 0.89^{5}	-	-	-	-
VY Mon	$0.17_{-0.10}^{+0.37}$	$0.32_{-0.20}^{+0.79}$	-26.3 ± 2.0^{1}	P^{31}	-*	$8.8{ }_{-4.0}^{+7.5}$	$0.08_{-0.07}^{+0.49}$
Z CMa	$0.25_{-0.07}^{+0.11}$	$0.43_{-0.15}^{+0.23}$	-25.0 ± 7.0^{1}	P^{8}	-	$3.8_{-0.8}^{+2.0}$	$0.80_{-0.59}^{+0.83}$

References. The $\mathrm{H} \alpha$ line profile classification is as follows: single-peaked (s), double-peaked (d) and showing a P-Cygni profile (P), both regular or inverse. An asterisk together with the variability indicator indicates that the source had been catalogued as UXOR type in the literature. Variability indicator values $\left(V_{i}\right)$ for these objects could not be derived as they are not astrometrically well behaved. Similarly, many of these sources fall outside the Pre-Main Sequence tracks and isochrones in the HR diagram and no masses or ages could be derived for them. We decided to present the masses and ages in the cases they were computable but these values have to be taken with caution. References for EW values and line shapes: (1) Fairlamb et al. (2017); (2) Carmona et al. (2010); (3) Mendigutía et al. (2011a); (4) Ababakr et al. (2016); (5) Hernández et al. (2004); (6) Baines et al. (2006); (7) Wheelwright et al. (2010); (8) van den Ancker et al. (1998); (9) Oudmaijer \& Drew (1999); (10) Kučerová et al. (2013); (11) Hernández et al. (2005); (12) Dunkin et al. (1997); (13) Pogodin et al. (2012); (14) Miroshnichenko et al. (1999); (15) Sartori et al. (2010); (16) Polster et al. (2012); (17) Manoj et al. (2006); (18) Miroshnichenko et al. (2004); (19) Miroshnichenko et al. (2002); (20) Borges Fernandes et al. (2007); (21) Vieira et al. (2003); (22) Boehm \& Catala (1995); (23) Nakano et al. (2012); (24) Spezzi et al. (2008); (25) Hou et al. (2016); (26) Grinin \& Rostopchina (1996); (27) Vieira et al. (2011); (28) Acke et al. (2005); (29) Herbig \& Bell (1988); (30) Oudmaijer, et al. (1998); (31) X-Shooter spectra, 2015, priv. comm, from ESO observing program 084.C-0952A; (32) Ababakr et al. (2017); (33) Zuckerman et al. (2008); (34) Oudmaijer, et al. (1998); (35) Frasca et al. (2016); (36) Miroshnichenko et al. (1998); (37) Miroshnichenko et al. (2000)

Table 7. IR excess at each bandpass (defined as $\mathrm{F}_{\text {observed }} / \mathrm{F}_{\mathrm{CK}}$) for each Herbig $\mathrm{Ae} / \mathrm{Be}$ star belonging to the low quality sample of 34 sources.

Name	J	H	K	W 1	W 2	W 3	W 4
	$1.24 \mu \mathrm{~m}$	$1.66 \mu \mathrm{~m}$	$2.16 \mu \mathrm{~m}$	$3.4 \mu \mathrm{~m}$	$4.6 \mu \mathrm{~m}$	$12 \mu \mathrm{~m}$	$22 \mu \mathrm{~m}$
BP Psc	1.49	2.28	4.20	10.16	22.35	168.78	2200.40
DK Cha	14.73	49.13	170.17	325.14	-	7497.91	50750.83
GSC 5360-1033	2.65	6.78	12.87	-	-	-	-
GSC 5988-2257	2.62	6.21	16.62	47.97	117.47	1245.27	6594.26
GSC 6542-2339	2.19	3.64	5.68	-	-	-	-
HBC 1	88.74	484.43	2157.04	9200.72	27745.90	156330.65	1383272.17
HBC 324	0.93	1.57	3.60	15.52	54.31	943.29	13361.89
HBC 694	3.40	8.51	21.52	103.52	255.39	1995.47	31718.13
HBC 717	1.49	2.35	4.58	12.21	23.09	149.10	1086.81
HD 245906	1.65	2.56	4.15	6.60	9.67	58.51	465.93
HD 53367	1.27	1.32	1.39	3.04	4.84	5.37	116.70
HD 72106B	1.79	1.92	2.73	5.48	10.88	138.92	976.86
Hen 2-80	2.60	6.89	17.96	64.65	211.29	2910.69	15743.40
MWC 314	2.32	2.65	3.51	2.91	6.01	7.36	23.11
MWC 623	4.04	7.46	12.17	28.53	78.51	193.41	397.67
MWC 930	0.35	0.33	0.35	0.48	0.86	0.74	2.16
NX Pup	1.51	4.32	13.40	50.79	137.41	359.52	1521.35
PDS 144S	3.81	14.93	58.24	317.57	681.57	2883.63	21943.52
PDS 229N	1.36	-	-	11.85	22.39	173.19	938.57
PDS 322	1.08	1.24	1.58	3.81	8.96	181.89	22064.34
PDS 364	1.95	4.35	10.24	25.65	54.14	737.90	10364.41
PDS 371	1.03	3.51	9.47	22.73	55.17	247.26	2992.30
PDS 453	2.35	3.96	7.79	22.88	44.93	279.44	4685.85
PDS 530	0.86	3.03	13.43	62.07	146.37	960.03	7986.35
PDS 551	32.07	111.81	327.37	1230.71	4108.60	29748.04	220447.30
PDS 581	1.71	9.18	41.39	207.15	1047.80	4498.40	47015.82
PV Cep	2.83	24.69	147.34	483.75	2383.40	21362.00	157219.18
R CrA	18.56	89.19	567.83	-	-	12353.87	184275.03
UY Ori	1.70	3.77	11.11	36.23	84.99	1932.72	12539.63
V590 Mon	1.88	4.42	12.28	44.17	104.49	2075.86	21654.33
V645 Cyg	0.74	2.67	19.54	-	-	12523.05	124226.58
V892 Tau	18.38	57.37	142.10	149.55	392.45	14054.94	136211.22
VY Mon	2.70	5.67	13.53	38.47	-	897.71	7399.24
Z CMa	1.21	2.85	9.21	-	-	373.86	2204.64

[^0]: * e-mail: pymvdl@leeds.ac.uk

