

Magnetic fields of pre-main sequence low- and intermediate-mass stars

E. Alecian IPAG, Grenoble-Alpes University

STARRY Final conference, June 2019

OSUG

MAGNETIC FIELD MEASUREMENTS

Zeeman effect

- if $B_{|} \neq 0$ \rightarrow line splitting
- In the weak field approx.: $\Delta \lambda = Cg\lambda^2 |B|$ Modulus of magnetic field

Zeeman broadening

Johns-Krull 2009

Zeeman broadening What do we measure ?

Zeeman broadening What do we measure ?

Disk-locking prediction

|B| Important for understanding dynamos processes NOT for magnetospheric accretion processes

Zeeman effect

- if B_I ≠ 0
 →line splitting
 - →line circular polarisation
- In the weak field approx.:

 $\Delta \lambda = Cg\lambda^2 | \mathbf{B} |$ Modulus of magnetic field

 $V = -Cg\lambda^2(dI/d\lambda)B_I$

Stokes V Observations

- *High-resolution spectropolarimeter:
- ESPaDOnS @ CFHT NARVAL @ TBL HARPSpol @ ESO3.6m SPIRou @ CFHT => Require multi-line
 - analysis
- Multi-line analysis methods:
- PCA (Semel et al. 2006)
- SVD (Carroll et al. 2012)
 LSD (Donati et al. 1997)

Zeeman V signature

LSD mean profiles

Zeeman Doppler Imaging

© O. Kochukhov

Hill+2019

- 1. Monitoring over few Prot
- 2. Spherical harmonic decomposition
- 3. Potential field extrapolation

Photospheric + Ca IRT lines

LkCa 15, Donati+2019

Magnetic properties in T Tauri stars

MAPP and MaTYSSE projects (PI: J.-F Donati) ESPaDOnS, HARPSpol, Narval

The Herbig Ae/Be survey

Basic Magnetic properties

Herbig Ae/Be stars

- 300 G 3 kG
- Dipolar
- Stable

 Fossil field (non continuously sustained by dynamo)

T Tauri stars

- 1 to 5 kG
- Topology strongly dependent on the internal structure
- Highly variable
- Dynamo fields

THE ORIGIN OF MAGNETIC FIELDS IN RADIATIVE STARS

PMS evolution of the naked star

PMS evolution of the naked star

Field relaxation during the **PMS** phase

No rotation

 Numerical and analytical work:
 ⇒ Mixed stable configurations
 (Braithwaite & Nordlund 2006 ; Duez et al. 2010 ; Duez & Mathis 2010)

With rotation

- Lowest energy state: dipolar fields
- Initial helicity and angular momentum impact the final state (Emeriau & Mathis 2015)

Back in 2014

Back in 2014

IMTTS Survey

ESPaDOnS + HARPSpol snapshot observations 38 targets (PIs: Alecian, Hussain)

IMTTS Survey Results Villebrun et al. (2019)

IMTTS Survey Results Villebrun et al. (2019)

IMTTS Survey Results Villebrun et al. (2019)

HOW NON-MAGNETIC ARE NON-MAGNETIC STARS ?

B limit determination

- Hypothesis: a dipolar field may be hidden in the V signal
- MC simulations
 - -i, β , φ_{rot} random trials
 - B_d fixed
 - Compute noisy synthetic V profiles
 - Compute the # of detection

Alecian et al. (2016), Alecian et al. in prep.

B limit determination

- Hypothesis: a dipolar field may be hidden in the V signal
- MC simulations
 - $-i, \beta, \phi_{rot}$ random trials
 - B_d fixed

zk

- Compute noisy synthetic V profiles
- Compute the # of detection

B

Alecian et al. (2016), Alecian et al. in prep.

Magnetism at intermediate-masses

Adapted from Villebrun et al. 2019

Magnetism at intermediate-masses

Adapted from Villebrun et al. 2019

Magnetism at intermediate-masses

Take Home Messages

- B-field of TTS become more complex as the convective envelope become thiner
- WTTS and CTTS show similar field properties
- Once $M_{CE} < 2 M_{\star}$ magnetic field disappears, within few 0.1 Myr (for $M_{\star} < 3M_{\odot}$)
- Some HAes have low B-field but show strong accretion signatures

Monitoring IMTTS

Monitoring IMTTS

© Villebrun et al. 2019

THANK YOU !