

The Gaia mission Overview and data releases

A. Mora Aurora Technology BV for ESA. Gaia SOC (ESA-ESAC)

STARRY final conference. Leeds, UK. 2019-06-19

ESA UNCLASSIFIED - For Official Use

European Space Agency

Outline

- 1. Introduction
- 2. The mission
- 3. Data Release 2 (25 Apr 2018)
- 4. DR2 DPAC papers (some results)
- 5. Gaia papers (selection)
- 6. Data Release 3 and beyond

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 2

*

1. Introduction

ESA UNCLASSIFIED - For Official Use

Gaia mission status

Gaia spacecraft is fine and operating nominally

- End of nominal 5 year mission in summer 2019
- Gaia DR2 22 months of data, Gaia DR3 34 months of data, collected so far 58 months

MISSION STATUS NUMBERS

CURRENT DATE AND TIME	2019-06-16T07:05:16 (TCB)
MISSION STATUS	
Satellite distance from Earth (in km)	1,603,316
Number of days having passed since 25 July 2014	1787
OPERATIONS DATA (collected since 2014/07/25)
Volume of science data collected (in GB)	67,116
Number of object transits through the focal plane	127,944,547,836
Number of astrometric CCD measurements	1,261,167,685,808
Number of photometric CCD measurements	255,259,065,886
Number of spectroscopic CCD measurements	24,726,346,215
Number of object transits through the RVS instrument	8,258,125,095

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 4

+

2. Gaia: parallaxes → distances

Stellar parallax: Measuring the distance of stars

Source: University of Virginia

https://socratic.org/questions/how-stellar-parallax-is-measured

ESA UNCLASSIFIED - For Official Use

2. Parallax + proper motion

eds, UK | 2019-06-19 | Slide 6

gaia European Space Agency

2. The Hyades open cluster

eds, UK | 2019-06-19 | Slide 7

gaia European Space Agency

2. The mission

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 8

|+|

Scientific Mission Goals

Astrometry (G < 20 mag)

completeness to 20 mag (on-board detection) $\Rightarrow 10^9$ stars accuracy: 26 µarcsec at G=15 mag (Hipparcos: 1 milliarcsec at 9 mag) scanning satellite, two viewing directions \Rightarrow global accuracy, with optimal use of observing time principle: global astrometric reduction (as for Hipparcos)

Photometry (G < 20 mag)

astrophysical diagnostics (low-dispersion photometry) + chromaticity $\Rightarrow \Delta T_{eff} \sim 100 \text{ K}$, log g, [Fe/H] to 0.2 dex, extinction (at G=15 mag)

Radial velocity ($G_{RVS} < 16 \text{ mag}$)

accuracy: 15 km s⁻¹ at G_{RVS} =16 mag application:

third component of space motion, perspective acceleration

dynamics, population studies, binaries

spectra for G_{RVS} < 12 mag: chemistry, rotation

principle: slitless spectroscopy in Ca triplet (845-872 nm) at R = ~10,800 A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 9

Celestial reference frame: distant quasars

Nearby galaxies

Milky Way: halo and globular clusters

Satellite and System

- ESA-only mission
- Launch: 19 December 2013
- Launcher: Soyuz–Fregat from French Guiana

Figure Soyuz: Arianespace; figure Gaia: ESA - C. Carreau

- Orbit: L2 Lissajous orbit
- Ground stations: Cebreros, New Norcia + Malargüe
- Lifetime: nominal mission 5 years
- Downlink rate: 8 Mbps

ESA UNCLASSIFIED - For Official Use

Measurement principle

gaia European Space Agency

Two telescopes (absolute astrometry) + large optics (sharpness) + CCDs (SNR)

Gigapixel focal plane

ESA UNCLASSIFIED - For Official Use

Photometry

gaia European Space Agency

Low resolution spectrophotometry $\rightarrow \leq 1$ billion stars x ~100 epochs visible SEDs

Diagrams courtesy C. Jordi and J.-M. Carrasco

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 14

*

. :: = + !! = :: : !! !! : : : : : : !! !! : : :

Spectroscopy

Intermediate resolution CaII IR triplet \rightarrow tens of millions, largest spectroscopic survey!

3. Data Release 2 (25 Apr 2018)

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 16

*

gaia European Space Agency

Gaia Data Release 2 in numbers

Data Products	Gaia DR2	Gaia DR1
Total number of sources (G, a , δ)	1.69 billion	1.14 billion
Position, parallax proper motion	1.33 billion	0.002 billion
Position only (a, δ)	0.36 billion	1.14 billion
Colours (BP/RP)	1.38 billion	-
Radial velocity at $G_{RVS} < 12$ (~ G < 13)	7.2 million	-
Stellar Parameters	77-161 million	-
Variable star light curves	551 thousand	3 thousand
Asteroid epoch astrometry/photometry	14 thousand	-

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 17

|+|

The Gaia Sky in Colour

Astrometry performance

Precision	Parallax	Prop. motion
G=15	0.03 mas	0.06 mas/yr
G=17	0.1 mas	0.2 mas/yr
G=20	0.7 mas	1.2 mas/yr
G=21	2.0 mas	3.1 mas/yr

Systematics below 0.1 mas/0.1 mas/yr Bright star performance calibration limited

Spatial Correlations at ~1 deg and ~20 deg scales

ESA UNCLASSIFIED - For Official Use A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 19

= 11 🖕 :: = + 11 = 🗏 = 11 11 = = : :: = 0 11 = :

Photometric performance

esa

Significant calibration improvements w.r.t. DR1

Systematics $\leq 10 \text{ mmag}$

Remaining caveats

Faint end dominated by stray-light

Bright end affected by saturation effects

Calibration issues at window class regime transitions

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 20

ESA UNCLASSIFIED - For Official Use

Stellar Parameters

Extinction map

Surface temperature for 161 million stars Radius, luminosity, extinction and reddening for ~ 80 millions Some degeneracies in derived parameters 2.5

Radial velocities in DR2

Accuracy around a few 100 m/s, worse at higher magnitude End of mission requirement on precision (1 km/s) already met at bright end Only provided for sources at ~ $3550 < T_{eff} < 6900$ K

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 22

The set = + 11 = ≤ = 11 11 = ≤ ≤ H = 01 11 =

Variable stars: light curves

- 550,000+ variable stars identified. 7 Vioque+ (2018) HAeBe
 - 3-band light curves for all •
- Variability classes (RR Lyrae, Cepheids, Mira, etc) and detailed parameters (e.g. period) for sub-sets

ESA UNCLASSIFIED - For Official Use

4. DR2 DPAC papers (some results)

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 24

+

Babusiaux+ HR diagram

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 25

gaia European Space Agency

Babusiaux+ MS Hyades, Praesepe

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 26

*

Babusiaux+ WDs and red clump

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 27

📑 🛨 💥 🕍 🚺 🥵 gaia European Space Agency

Babusiaux+ stellar clusters

Babusiaux+ stellar populations

Andrae+ 88M extinctions

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 30

*

Andrae+ dereddened HR diagram

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 31

gaia European Space Agency

esa

Andrae+ Orion dust tomography

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 32

: •• 🛌 :: = + • • • = 🚍 = • • • • = = :: = •

Katz+ Milky Way disc kinematics

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 33

ESA UNCLASSIFIED - For Official Use

Katz+ Milky Way disc kinematics

Lots of structure in velocity plane: equilibrium?

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 34

gaia European Space Agency

Helmi+ LMC rotation

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 35

*

5. Gaia papers (selection)

ESA UNCLASSIFIED - For Official Use

ADS statistics

Gaia all refereed papers: 1755

All citations: 25482

DR2 refereed papers: 1264 ~3/day

Refereed citations: 7308

Most cited paper (1528):

Gaia Collaboration; Brown+ 2018A&A...616A...1G

Gaia Data Release 2. Summary of the contents and survey properties

Most cited papers (non-DPAC)

Ivezić+ (978) 2019ApJ...873..111I

LSST: From Science Drivers to Reference Design and Anticipated Data Products

Bailer-Jones+ (313) 2018AJ....156...58B

Estimating Distance from Parallaxes. IV. Distances to 1.33 Billion Stars in Gaia Data Release 2

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 37

💵 💶 📰 🗰 🔚 🚺

Most cited: DPAC

- Gaia Collaboration; Brown+ (1528) 2018A&A...616A...1G
- Gaia Data Release 2. Summary of the contents and survey properties
- Gaia Collaboration; Prusti+ (1340) 2016A&A...595A...1G
- The Gaia mission
- Gaia Collaboration; Brown+ (1086) 2016A&A...595A...2G
- Gaia Data Release 1. Summary of the astrometric, photometric, and survey properties
- Lindegren+ (491) 2016A&A...595A...4L
- Gaia Data Release 1. Astrometry: one billion positions, two million proper motions and parallaxes
- Lindegren+ (465) 2018A&A...616A...2L
- Gaia Data Release 2. The astrometric solution

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 38

*

Most cited: the Galaxy

- Gaia Collaboration; Katz+ (92) 2018A&A...616A..11G
- Gaia Data Release 2. Mapping the Milky Way disc kinematics
- Helmi+ (81) 2018Natur.563...85H
- The merger that led to the formation of the Milky Way's inner stellar halo and thick disk
- Antoja+ (76) 2018Natur.561..360A
- A dynamically young and perturbed Milky Way disk
- Belokurov+ (67) 2018MNRAS.478..611B
- Co-formation of the disc and the stellar halo
- Bovy+ (55) 2016ApJ...833...31B

The Shape of the Inner Milky Way Halo from Observations of the Pal 5 and GD--1 Stellar Streams

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 39

*

Most cited: the Galaxy

Antoja+ (2018): spiral patterns in phase space projections

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 40

gaia European Space Agency

Most cited: the Galaxy

Antoja+ (2018): ridges in phase space \rightarrow mixing. Perturbation by Sagittarius passage?

ESA UNCLASSIFIED - For Official Use

Most cited: astrometric bias

Riess+ (163) 2018ApJ...861..126R

Milky Way Cepheid Standards for Measuring Cosmic Distances and Application to Gaia DR2: Implications for the Hubble Constant

Riess+ (156) 2018ApJ...855..136R

New Parallaxes of Galactic Cepheids from Spatially Scanning the Hubble Space Telescope: Implications for the Hubble Constant

Silva Aguirre+ (82) 2017ApJ...835..173S

Standing on the Shoulders of Dwarfs: the Kepler Asteroseismic LEGACY Sample. II.Radii, Masses, and Ages

Stassun+ (70) 2018ApJ...862...61S

Evidence for a Systematic Offset of -80 µas in the Gaia DR2 Parallaxes

Huber+ (60) 2017ApJ...844..102H

Asteroseismology and Gaia: Testing Scaling Relations Using 2200 Kepler Stars with TGAS Parallaxes

ESA UNCLASSIFIED - For Official Use

Most cited: astrometric bias

esa

Most cited: other surveys

Ivezić+ (978) 2019ApJ...873..111I

LSST: From Science Drivers to Reference Design and Anticipated Data Products

Albareti+ (269) 2017ApJS..233...25A

The 13th Data Release of the Sloan Digital Sky Survey: First Spectroscopic Data from the SDSS-IV Survey Mapping Nearby Galaxies at Apache Point Observatory

Kunder+ (223) 2017AJ....153...75K

The Radial Velocity Experiment (RAVE): Fifth Data Release

Luo+ (117) 2017ApJS..228....2L

The Chandra Deep Field-South Survey: 7 Ms Source Catalogs

Zacharias+ (94) 2017AJ....153..166Z

UCAC5: New Proper Motions Using Gaia DR1

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 44

= •• •= = + •• = = = = •• •• = = = :

Most cited: other surveys

Ivezić+ (2019): Gaia reference \rightarrow superb astrometry and photometry

Table 3. The expected proper motion, par- $a_{\text{Typical astrometric accuracy (rms per coor$ allax and accuracy for a 10-year long baseline survey.

r	$\sigma_{xy}{}^{\mathrm{a}}$	$\sigma_{\pi}{}^{\mathrm{b}}$	$\sigma_^{ m c}$	${\sigma_1}^{ m d}$	$\sigma_C{}^{ m e}$
mag	\max	mas	mas/yr	mag	mag
21	11	0.6	0.2	0.01	0.005
22	15	0.8	0.3	0.02	0.005
23	31	1.3	0.5	0.04	0.006
24	74	2.9	1.0	0.10	0.009

dinate per visit).

^bParallax accuracy for 10-year long survey.

 c Proper motion accuracy for 10-year long survey.

^dPhotometric error for a single visit (two 15second exposures).

^ePhotometric error for coadded observations (see Table 1).

ESA UNCLASSIFIED - For Official Use

Most cited: exoplanets

- Mathur+ (107) 2017ApJS..229...30M
- Revised Stellar Properties of Kepler Targets for the Q1-17 (DR25) Transit Detection Run
- Perryman+ (99) 2014ApJ...797...14P
- Astrometric Exoplanet Detection with Gaia
- Stassun+ (86) 2018AJ....156..102S
- The TESS Input Catalog and Candidate Target List
- Thompson+ (79) 2018ApJS..235...38T
- *Planetary Candidates Observed by Kepler. VIII. A Fully Automated Catalog with Measured Completeness and Reliability Based on Data Release 25*
- Fulton & Petigura (61) 2018AJ....156..264F
- The California-Kepler Survey. VII. Precise Planet Radii Leveraging Gaia DR2 Reveal the Stellar Mass Dependence of the Planet Radius Gap

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 46

*

Most cited: exoplanets

Fulton & Petigura (2018). Much better transiting planet radii uncertainties

ESA UNCLASSIFIED - For Official Use

Most cited: exoplanets

Fulton & Petigura (2018). Distinction between sub-Neptunes and super-Earths

ESA UNCLASSIFIED - For Official Use

Most cited: young stars and discs

Fedele+ (87) 2017A&A...600A..72F

ALMA unveils rings and gaps in the protoplanetary system HD 169142: signatures of two giant protoplanets

van Boekel+ (78) 2017ApJ...837..132V

Three Radial Gaps in the Disk of TW Hydrae Imaged with SPHERE

Gagné+ (73) 2018ApJ...856...23G

BANYAN. XI. The BANYAN Σ Multivariate Bayesian Algorithm to Identify Members of Young Associations with 150 pc

Keppler+ (56) 2018A&A...617A..44K

Discovery of a planetary-mass companion within the gap of the transition disk around PDS 70

Cleeves+ (56) 2016ApJ...832..110C

The Coupled Physical Structure of Gas and Dust in the IM Lup Protoplanetary Disk

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 49

· = ■ ► = = + ■ = = = = ■ = = = = = = ■ ■ ■ ■ = = =

Most cited: young stars and discs

- Gagné+ (2018) 2018ApJ...856...23G
- Young association automatic detection
- 6D input (positions + velocities)
- Very active field (contributions in this conference)

ESA UNCLASSIFIED - For Official Use

Global science

Nature's 10 2018

ANTHONY BROWN: Star mapper

Working behind the scenes, an astronomer coordinated the release of Gaia's long-awaited bounty of Milky Way data.

BY RACHEL COURTLAND

ESA UNCLASSIFIED - For Official Use

6. Data Release 3 and beyond

ESA UNCLASSIFIED - For Official Use

Gaia EDR3/DR3 schedule

- Gaia EDR3 in third quarter of 2020
- Gaia DR3 second half 2021
- Both releases based on same input data and same source list
 - 34 months of input data

(E)DR3 contents on following slides are subject to successful processing and validation. Source numbers are preliminary estimates!

ESA UNCLASSIFIED - For Official Use

Contents of Gaia EDR3

Data Product	No. of sources	Comments
Astrometry	\sim 1.8 billion	including new quality indicators: RUWE, source image descriptors
Integrated G, GBP, GRP photometry	\sim 1.8 billion	with corresponding passbands
QSO host and galaxy morphological characterization	~ 3 million	based on input list
Cross-match with external catalogues		
Gaia-CRF		
DR2-to-DR3 match table		

ESA UNCLASSIFIED - For Official Use

New in Gaia EDR3: extended sources

SM windows around (I,b) = (0.0,0.0)

Individual windows (SM) Number of Transits : 59

Coverage fraction : 87.61 %

Figure credits: DPAC-CU4/C. Ducourant

- 'Stacking' of multiple transits across extended source
 - detection of extended components •
- Galaxy morphology, bulge/disk ratio, basic disk parameters
- QSO host galaxy morphology, ratio QSO to host intensity, offsets between the two •
- Based on input list of \sim 1.9 million galaxies and \sim 1.6 million QSOs ٠
- NOTE: Stacked images are not released •

ESA UNCLASSIFIED - For Official Use

Contents of Gaia DR3

Data Product	No. of sources	Comments
Repeat of EDR3 contents		
Source Classification and astrophysical parameters	>~ 300 million	based on the BP/RP spectra, magnitude limit TBD
Radial velocities	~ 30 million	GRVS <~ 14
Mean BP/RP/RVS spectra	TBD subset of sources	
Photometric variability characterization, classification, light curves	~ 7 million	eclipsing, (MS) pulsating, transients, spotted, flaring, evolved pulsators, and quasars
Solar system objects epoch astrometry/photometry	~ 100 000	including orbit solutions
Solar system objects mean BP/RP reflectance spectra	~ 5000	
Catalogue of astrometric, spectroscopic, eclipsing non-single stars	TBD	Combined solutions where possible

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 57

■ II ► II ■ + II ■ ⊆ = II II = = II = II = II = II

|+|

New items in Gaia DR3

gaia European Space Agency

Astrometric non-single star solution types

- acceleration, 7 and 9 parameters
- orbital solutions, 12 parameters
- stochastic solutions
 - single star source model or basic binary star model does not fit
- NOTE: no epoch astrometry or epoch radial velocities will be released as part of Gaia DR3

Astrophysical parameters based on BP/RP/RVS spectra

- T_{eff} , A_G , $E(G_{\text{BP}} G_{\text{RP}})$, log g, metallicity, abundances, distances, radii, masses, activity index
 - solutions from multiple algorithms will be provided
 - rotational velocity for bright subset of stars (TBC)
- Extinction map
- Sourceclassification(star,binary,galaxy,...)

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 58

Mean BP/RP/RVS spectra

- For subset of sources only
- Tool to handle BP/RP spectra will be provided

Solar system objects

- Orbits
- Reflectance spectra

Gaia DR4

- Final release for the nominal misión
 - 60 months input data; schedule TBD
- Foreseen data products
 - Full astrometric, photometric, and radial-velocity catalogues
 - All variable-star and non-single-star solutions
 - Source classifications (probabilities) plus multiple astrophysical parameters (derived from BP/RP, RVS, and astrometry) for stars, unresolved binaries, galaxies, and quasars
 - Catalogue of binaries and exo-planets
 - Image reconstruction results
 - All epoch and transit data for all sources, including all BP/RP/RVS spectra

Overall gain in precision for DR3 and DR4: factors 1.2 $\,$ and 1.7 with respect to DR2 $\,$

proper motions improve by factors 1.9 and 4.5

ESA UNCLASSIFIED - For Official Use

Gaia extension

- Nominal Gaia mission ends mid-2019 after 5 years of measurements
- Hardware in good shape, only limiting factor is micro-propulsion fuel
- mission can continue to end-2024 (±0.5 yr)
- Proposal submitted to ESA for 5 year extensión
- approved to end 2020, preliminary approval to end 2022, submit proposal for 2023–2024 in 2020

10 year mission

- Parallaxes, photometry, radial velocities improve by factor 1.4 with respect to DR4
- Proper motions improve by factor of 2.8 wrt DR4
 - Improvement of more complex motions (e.g., planets) up to factors of 20
- Accurate tangential motions over 22.6× larger volume

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 60

► **:: = + II =** '= **:** II |

Gaia extension

- Larger volume reached throughout the halo at given proper motion accuracy
- Uncover more streams
- Probe young and unmixed debris located beyond 20–30 kpc
- Calibration of spectrophotometric distance indicators on nearby samples → full gain in tangential motion performance

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 61

gaia European Space Agency

ESA postdoctoral fellowships

ESA fellowship in space science **Deadline: 1 October 2019**

https://www.cosmos.esa.int/web/science-faculty/research-fellowship

ESA UNCLASSIFIED - For Official Use

A. Mora | The Gaia mission. Overview and data releases | STARRY. Leeds, UK | 2019-06-19 | Slide 62

The set = + 11 = ≤ ≤ 11 11 ≤ ≤ ≤ ≈ ∞ 11 ≤ ≤ ≈ ∞

Your papers are the best argument for an extended Gaia mission

- Please acknowledge the work by DPAC and ESA in your papers
 - helps us argue the case for continued funding of the data processing
 - https://gea.esac.esa.int/archive/documentation/credits.html
- Communicate your Gaia results
 - <u>https://www.cosmos.esa.int/web/gaia/communicating-your-results</u>

ESA UNCLASSIFIED - For Official Use

Additional slides

ESA UNCLASSIFIED - For Official Use

2. Gaia: spacecraft, launch and orbit esa

ESA UN

Photometry and spectroscopy

