YSO Variability in VVV: episodic accretion, disc occultations and explosions

Philip Lucas, University of Hertfordshire

Zhen Guo, Leigh Smith, Javier Alonso Garcia, Jura Borissova, Nicolas Medina, Radostin Kurtev, Calum Morris, Carlos Contreras Pena, Dante Minniti, Alessio Caratti o Graratti, Dirk Froebrich, Nanda Kumar

Outline

- VVV/VVX overview
 - Variability and Astrometry
- Background to eruptive variable YSOs
- The high amplitude IR variable sky
- YSO variability in VVV: accretion, extinction ... and collisions?

VVV/VVX footprint

Minniti, Lucas et al.2010, New Ast. 15, 433 (VVV definition) Saito, Hempel et al.2012, A&A, 537, A107 (DR1 paper)

l=230 to l=20° -4.5 < b < 4.5°

VISTA 4m telescope and VIRCAM at Paranal

16 2048x2048 HgCdTe arrays 1x1.5 deg FOV in filled tiles

Individual pawprints better calibrated

Variability in Young Stellar Objects (YSOs)

- Most (93%) pre-main sequence stars are variable (Rice, Wolk & Aspin 2012 ApJ).
 - Hot & cold spots, changing extinction and changing accretion.
- A very few YSOs were known to vary by a few magnitudes. Episodic accretion.
 - FUors: eruptions then a long term decline (decades). ~ 9 objects
 - EXors: shorter term eruptions with slightly smaller changes. ~ 8-12 objects
- Deeply embedded eruptive variables were few in 2014, but numbers growng.
 - Hodapp et al.'96, Persi et al.'07, Caratti o Garatti '11
 - Tapia et al.'15, Safron et al.'15 (Class 0 YSO), Caratti o Garatti et al.'17 (Massive protostar).
- Reviews by Hartmann et al.1996, Ann.Rev.AA, 34, 207
 Audard et al.2014, Protostars and Planets VI, arXiv: 1401.3368

Importance of eruptive variability

- Accretion-driven outbursts are thought to be common among pre-MS stars.....but rarely seen (e.g. Hartmann & Kenyon 1996, AnnRevAA, 34,207).
- May explain the scatter in HR diagrams of PMS clusters. (Baraffe et al. 09).
- Could also solve the "Luminosity problem" (Kenyon et al. 1990), Enoch et al. (2009) most YSOs have low luminosities (~1 L₀).
-and it would mean that masses & ages in the literature are often wrong.

Cause of outbursts?

- The theory is tricky, several dozen options discussed (Audard review).
- Thermal instability (accretion limit cycle like dwarf novae)
- GPI+MRI rate mismatch (Zhu et al.2009abc).
- Binary companion on eccentric orbit (Bonnell & Bastien 1992)
 - Seen in LRLL 54361 with 10d period (Muzerolle et al.2013)
- GI/fragments infalling (Vorobyov & Basu 2015)
- Magnetic truncation of the disc just beyond the co-rotation radius (D'Angelo & Spruit 2010, 2012)
- Rossby Wave instability, Baroclinic instability, Streaming instability
- Influence of planets
- Accretion disc theories remain tentative.

VVV and UKIDSS IR searches – many discoveries

- UKIDSS: 2 epochs, showed that YSOs are likely the commonest type of high amplitude IR variable. Contreras Peña et al.2014, MNRAS; Lucas et al.2017, MNRAS
- VVV: 1st search of 2010-12 data for Δ Ks>1 mag stars <u>seen at all epochs</u>. Focussed on the -1<b<1° region at l=295-350° that has HERSCHEL and *Spitzer* data.
- Found 816 VVV sources down to Ks=16. 106 eruptive YSOs, mostly class I.
 - Contreras Peña et al.2017a, MNRAS, 465, 3011; 2017b, MNRAS, 465, 3039

~50% were YSOs Method had ~50% completeness

Also dusty LPVs (Miras) and Eclipsing Binaries

High mass eruptive YSOs? Kumar et al.2016, ApJ, 833, 24 Teixeira et al.2018, A&A, 619, A41

UKIDSS plot of near IR variable sky: YSOs!

A catalogue of 618 high amplitude variables across 1470 sq deg of the plane.

~60% are YSOs (via spatial association), also other interesting things... (Lucas et al. 2017, MNRAS)

YSOs dominate the near IR variable sky at high amplitudes

Variability indices in new searches

Stetson I index

$$I = \sqrt{\frac{1}{n(n-1)}} \sum_{i=1}^{n} \left(\frac{b_i - \bar{b}}{\sigma_{b_i}} \right) \left(\frac{v_i - \bar{v}}{\sigma_{v_i}} \right)$$

Von Neumann Eta Index

$$\eta = \frac{\delta^2}{\sigma^2} = \frac{\sum_{i=1}^{N-1} (m_{i+1} - m_i)^2 / (N-1)}{\sum_{i=1}^{N} (m_i - \bar{m})^2 / (N-1)}$$

More recent VVV/VVX searches

- (1) VVV DR4 public database of aperture photometry of tiles (CASU pipeline)
 - Select high amplitude ($\Delta Ks > 3 \text{ mag}$) variables from vvvVariability table
 - Use pawprint data to compute Stetson I index.
 - 117 variables found, including ~25 YSOs with Δ Ks = 3 to 4.5 mag.
 - Xshooter spectra recently obtained.

- (2) VIRAC2 PSF photometry database for pawprint data (DoPhot)
 - 8 year light curves (2010-2018)
 - More reliable, more complete, deeper in crowded fields
 - Selected ($\Delta Ks > 4$ mag) variables using Stetson I and von Neumann Eta indices

8 year light VVV+VVX curves: trends become clearer

Searched all VVV/VVX 8 year light curves for ΔKs>4 mag variables AND transients

- PSF Photometry performed with DoPhot
 - (Schechter et al.1993, PASP 105, 1342; J. Alonso Garcia, 2018, A&A, 619, A4)
- Relative photometry calculated locally within each array.
- Selected 248 candidates with: Δ Ks > 4 mag, Stetson I > 1000 OR η < 0.5 median Ks > 11.25, pp2frac > 0.2 (Also a separate transient search)
- Result: 176 real, 7 real but lower amplitude, 65 bogus
 - Real: YSOs, CVs, Microlenses, LPVs, unusual objects
 - Bogus: Bright stars, asteroids, blends, real lower amplitude, bad image,
 high PM stars, array edge defect, small defect, duplicate detection.
- Retrospective ideal selection
 - Eta<0.5 AND (Stetson I >1000 OR pp2frac>0.35)
 - Recovers 168/176 real, 8 bogus)
 (mostly High PM stars & real lower amplitude variables.)
 - allows relaxation of cuts on median K & pp2frac to find a few more variables.

VIRAC2 PSF search results

- VIRAC2 PSF photometry database for pawprint data (DoPhot)
 - 195 real variables found, 67 of them in star forming regions.

59 YSOs + 9 transients

40 eruptive (includes some faders)

9 dippers (likely extinction events)

10 ambiguous

VVV/VVX 8 year light curves: 65 YSOs with ΔKs>4 mag

Typical properties of $\Delta Ks>4$ mag eruptions

Slow rise: 2-3 years

Long duration: > 3 yr after initial peak

Total duration >5 yr

This is longer than the 1 to 4 yr we had thought for lower amplitude eruptions in CP17a.

Also, periodic variability not seen.

A most extreme eruption

Discovered in WISE / Neowise

 Δ Ks > 6.5 mag

8.5 mag variation at 4.5 µm 7.6 mag variation at 3.5 µm (Glimpse vs. WISE difference).

Distance ~ 3 kpc

Class I protostar colours.

Extreme amplitude may rule out some models of episodic accretion, e.g. thermal instability.

Occultations ... by precessing disc or circumbinary disc? Consider KH15D (Herbst, W. et al., 2002, PASP, 114, 1167)

Explosive events in SFRs - colliding protostars?

 Follows from VVV-WIT-01 (a red transient in an infrared dark cloud): search of working PSF database has found 8 additional transients in SFRs

BN/KL explosion in Orion

Bally et al.(2017, ApJ, 837, 60)

Explosive events in SFRs: colliding protostars or just novae?

- 58 classical novae, 12 in the Glimpse I region
- Chance to see 1 in an IRDC: $p = 1 0.99^{(12)} = 0.11$. Not that unlikely.

Summary/Work Ahead

- 8 year PSF-based database has yielded 59 YSOs with >4 mag variation
 - Substantial samples of eruptive variables and extinction events.
 - Most outbursts rise slowly (years) with rare exceptions
 - Outbursts last a long time, often >5 yr.
 - Periodic variability not seen.
 - Variety of light curves suggests multiple processes can cause episodic accretion.
- FUor-like spectra or EXor-like?
- The Luminosity Problem
 - Use VVV/VVX to test whether episodic accretion is a solution.
- Protostellar collisions in star forming regions?
 - 9 candidates but quite likely all these are classical novae.
 - VVV/VVX sample of near IR nova light curves will be useful.

Thank you for listening...