Stellar evolution from the Pre Main Sequence to the Zero Age Main Sequence

Alessandro Bressan

International School for Advanced Studies (SISSA) Trieste

Collaborators G. Costa, C.T. Nguyen - SISSA Y. Chen, P. Marigo - Padova University X. Fu - Kavli Institute Peking University L. Girardi - INAF OAPD

Leeds, 18/6/2019

Outline

- Standard PARSEC PMS Models
- The Zero Age Main Sequence
- New PARSEC PMS Models with accretion
- An application to Herbig Ae/Be stars
- Conclusions

Basic Ingredients of PARSEC PAdova TRieste Stellar Evolution Code

- High-temperature opacity log(T): 4.2 8.7 Opacity Project At Livermore (OPAL, Iglesias & Rogers 96) Conductive opacities are included following Itoh et al. 08
- Low temperature opacity log(T): 3.2 4.1 AESOPUS (Marigo & Aringer2009)
- EOS is the FreeEOS by A.W. Irwin (GPL licence http://freeeos.sourceforge.net/)
 Interpolation in 4 dimensions: T R (= ρ/T6) X Z or Y-C-O Z

Solar abundance

Z = 0.0152 Z/X = 0.0209 Caffau et al. 2011

Z = 0.017 Z/X = 0.023 Grevesse & Sauval 98 (GS98) Z = 0.0134 Z/X = 0.0181 Asplund et al. 2009 (A+09)

Basic Ingredients of PARSEC PAdova TRieste Stellar Evolution Code

NUCLEAR REACTIONS

p-p chains CNO tri-cycle Ne–Na Mg–Al chains α -capture α -n reactions recommended rates: JINA reaclib database Cyburt et al. 10 (updated to 2016)

- Convective energy transport Mixing Length: calibration with the Solar Model = 1.74 Hp
- Mixing

Core overshooting and envelope overshooting Turbulent diffusion implemented Microscopic diffusion included (coefficients Thoul+ 94)

- Rotation: geometry and mixing (Costa+19)
- Boundary conditions (see later)

PMS Evolution

Standard : constant mass

Starting Model: an inflated configuration with central Tc=10⁵K

The star is let to contract under the effects of gravity

ZAMS: the point, after central D-burning where, contraction stops under the effects of main nuclear reactions (Lg = 0)

The Zero Age Main Sequence

To characterize PMS phase in the CMD, a well behaved ZAMS is needed. LMS models show a discrepancy with the observed mass-radius of dwarf stars. *In PARSEC V1.1 DR/R ~ 8% (Chen+14)*

Implementing boundary conditions (T- τ relations Te, g) from PHONIX BT-Settl models, reduce DR/R to 5% (PARSEC V1.2).

The Zero Age Main Sequence

With shifted T-tau relations (from 0 at Teff=4730K to 14% at Teff = 3160 K) models may reproduce the observed mass-radius relation for dwarf stars.

g-z

The Zero Age Main Sequence

The model ZAMS matches that of Gaia DR2 Open Clusters (Z₀, Bossini+19)

Brown lines: PARSEC PMS tracks

Cyan line: PARSEC PMS track at Bossini+19 age

ZAMS & PMS Evolution

Models with Accretion

- accreting matter specific entropy = that of star surface (Hartmann+97; but see Stahler, Shu & Taam 1980, Stahler, Palla, Salpeter 1986) accretion luminosity $L_{acc} = \frac{GM\dot{M}}{R} (1 - \frac{R*}{R_{in}})$
- $L_{add} = \xi \frac{GM\dot{M}}{R}$ ξ : heat injection efficiency $0 \le \xi \le 1$ (Baraffe+09,12) • $\frac{\partial L}{\partial M_r} = \varepsilon_n - T \frac{\partial S}{\partial t} |_{M_r} + \varepsilon_{add}$

•
$$\varepsilon_{add}(r) = \frac{L_{add}}{M} \times \max\left[0, \frac{2}{A^2}\left(\frac{M_r}{M} - 1 + A\right)\right]$$
 $0 \le A \le 1$
 $\varepsilon_{add} = 0$ from the center to $\frac{M_r}{M} = 1 - A$
 $\varepsilon_{add} \sim \frac{M_r}{M}$ from $\frac{M_r}{M} = 1 - A$ to M

(Kunitomo+ 17)

The accretion rate \dot{M}

- Empirical relation between outflow and the bolometric luminosity L of source *CH:Churchwell(1999)-Henning(2001)*
- Mass accretion rate \Box to the mass outflow
- Calibration against observations provide *f* (Haemmerle' et al. 2019)

$$\dot{M} = f \, \dot{M}_{\text{disc}} = \frac{f}{1 - f} \, \dot{M}_{\text{out}}$$

□ Adopted here:

 \dot{M} = 10⁻⁵ x M^{1.6} (Muzerolle +03; Natta+ 06 ~ M²)

Gaia DR2 sample of Herbig Ae/Be stars

M. Vioque^{1,2}, R. D. Oudmaijer¹, D. Baines³, I. Mendigutía⁴, and R. Pérez-Martínez² 2018

Pre Main Sequence tracks

- The initial model is a hydrostatic contracting core with $M=0.05~M_{\odot}$ $T_{c}~10^{5}$ K
 - ρ_c^{\sim} ~0.03g/cm³ R~3R₀
- The final mass of the sequence is $\sim 200 \text{ M}_{\odot}$
- Three values adopted for the exponent of the $\dot{M} \sim M^{\alpha}$ law:

$$\alpha$$
 = 1, 1.6, 1.8

$$-\xi = 0.1 \qquad L_{add} = \xi \frac{GMM}{R}$$

PMS: accretion rate and mass as a function of time

case with $\xi = 0.1$

The internal structure

Metallicity Effects

$$L_{add} = \xi \frac{GM\dot{M}}{R}$$

- Varying ξ changes the amount of heat absorbed by the star.
- The accretion rate is unaffected and so the rate of mass growth.
- The star reaches its final structure in the same time but its path in the HR diagram and internal structure are different.
- A better modelling should account for eventual feedback effects on the accretion rate, ξ and A.

 $\xi = 0.10$

M/Mtot

M/Mtot

ξ = 0.05 1.21.0 Lnuc/L Lgrav/L 0.8 0.6 Tc/1E7 0.4 ⁷Li_s 0.2 0.0 3.0 3.54.0 4.5 5.0 5.5 1.21.0 M/20.8 0.6 0.4 0.2 0.0 5.20 5.30 5.25 5.355.405.455.50

Log(AGE[Yr])

ξ = 0.02

What can be said on the evolutionary status of Herbig Ae/Be stars ?

Are constant mass models adequate to determine properties of such PMS stars?

Variation of accretion parameters may affect the location in the CMD. Thus the derived properties could be different when accretion models are used.

A typical path in presence of accretion

- PMS stars follow an accretion sequence until they reach critical conditions for accretion quenching, at a time t_b
- At this stage the PMS stars leave the accretion sequence
- Following evolution, toward ZAMS, determined by the time scale of the accretion quenching
- Assume an exponential decay of the accretion rate

 $\dot{M} = \dot{M}_b e^{-(t-tb)/\tau}$ t_b is the age on the birth line

- By construction, this model requires to select the rightmost PMS sequence that surrounds all the observed data (with α = 1.6)
- Grids of evolutionary sequences with

 $\alpha = 1.6$ t_b from 5 10² yr to 10⁶ yr Z=0.02

Grids of evolutionary sequences sufficiently populated to allow parameter extraction from best fits to data

Grids of evolutionary sequences sufficiently populated to allow parameter extraction from best fits to data

Grids of evolutionary sequences sufficiently populated to allow parameter extraction from best fits to data

Grids of evolutionary sequences sufficiently populated to allow parameter extraction from best fits to data

Grids of evolutionary sequences sufficiently populated to allow parameter extraction from best fits to data

Very simple algorithm for the best fit: nearest object because grid fine enough (wrt errors shown by Vioque+18)

At the largest values of τ , models cannot overlay the data in spite of many additional models of lower mass added to the grid

Grids of evolutionary sequences sufficiently populated to allow parameter extraction from best fits to data

Very simple algorithm for the best fit: nearest object because grid fine enough (wrt errors shown by Vioque+18)

At the largest values of τ , models cannot overlay the data in spite of many additional models of lower mass added to the grid

A few selected fits ...

A few selected fits ...

A few selected fits ...

Accretion vs Standard models

Current Masses (M_{curr})

M_{NO ACC}: values are taken from compilation of Vioque+18 (PARSEC/no acc/Z=0.01)

M_{ACC} : our estimates with new PARSEC models with accretion

Mass estimates from different models are in fairly good agreement !

Accretion vs Standard models AGES

$$t_{ACC} = t - t_{b}$$

 $t_{ACC}^{TOT} = (t-t_b) + t_b$

Accretion vs Standard modelsAge vs MASS $t_{ACC} = t-t_b$ $t_{ACC}^{TOT} = (t-t_b) + t_b$

 Model Hα luminosity derived from the accretion rate inverting existing empirical relationships (see also magnetospheric accretion models e.g. Hartmann+94, Muzerolle+98)

$$Log\left(\frac{Lacc}{L_{\odot}}\right) = a + b * Log\left(\frac{LH\alpha}{L_{\odot}}\right)$$

а	b		
2.09 ± 0.06	1.00 ± 0.05	Herbig Ae/Be stars	(Fairlamb+17)
1.50 ± 0.26	1.12 ± 0.07	CTTs	(Alcala' +14)
1.93 ± 0.23	1.13 ± 0.07	CTTs	(Barentsen+11)

• Accretion rates for individual objects fitted by evolutionary models depend on the rates decay law (e.g. e-folding time)

Observed H α Luminosity of Vioque+18 objects obtained from:

- EW(H α) -corrected for photospheric absorption (Fairlamb+17, Vioque+18)-
- H α continuum from SPECTRA(Teff, g, Lum) e.g. Lejeune+96; Munari+05

Adopted relation is Fairlamb+17: $Log\left(\frac{LH\alpha}{L_{\odot}}\right)_{model} = -2.1 + Log\left(\frac{Lacc}{L_{\odot}}\right)$

Adopted relation is Fairlamb+17: $Log\left(\frac{LH\alpha}{L_{\odot}}\right)_{model} = -2.1 + Log\left(\frac{Lacc}{L_{\odot}}\right)$

Adopted relation is Fairlamb+17: $Log\left(\frac{LH\alpha}{L_{\odot}}\right)_{model} = -2.1 + Log\left(\frac{Lacc}{L_{\odot}}\right)$

Adopted relation is Fairlamb+17: $Log\left(\frac{LH\alpha}{L_{\odot}}\right)_{model} = -2.1 + Log\left(\frac{Lacc}{L_{\odot}}\right)$

Adopted relation is Fairlamb+17: $Log\left(\frac{LH\alpha}{L_{\odot}}\right)_{model} = -2.1 + Log\left(\frac{Lacc}{L_{\odot}}\right)$

Adopted relation is Fairlamb+17: $Log\left(\frac{LH\alpha}{L_{\odot}}\right)_{model} = -2.1 + Log\left(\frac{Lacc}{L_{\odot}}\right)$

Main challenge of these models

Using

- stellar birth-line with ξ = 0.10 and \dot{M} = 10⁻⁵ x M^{1.6}
- exponential decay

 $\dot{M} = \dot{M}_b e^{-(t-tb)/\tau}$ $H\alpha$ in Objects with luminosity $Log\left(\frac{L}{L_o}\right) < 2$ cannot be reproduced

Observed $H\alpha$ luminoisty reproduced

- only using $\tau \sim 0.5-1.0 \times 10^5 \text{yr}$
- only in more luminous objects $Log\left(\frac{L}{L_{\odot}}\right) > 2$

$$Log\left(\frac{LH\alpha}{L_{\odot}}\right)_{observed} > -0.5 - 0$$

Accretion rate and mass as a function of time.

Case with $\xi = 0.1$

Ways out

1) Rejuvenated models (hot): accretion resumes while the star is already on the ZAMS: too short lifetime near the ZAMS: models spend most of the time above cold accretion ($\xi = 0$) path!

Ways out

1) Rejuvenated models (hot): accretion resumes while the star is already onthe ZAMS: too short lifetime near the ZAMS: models spend most of the time above cold accretion ($\xi = 0$) path!

3) Intermittent cold-hot accretion

CONCLUSIONS

- PARSEC ZAMS is well calibrated and nicely fits also GAIA DR2 CMDs of Open Clusters
- In GAIA DR2, PMS of young clusters well defined and generally sharp
 - very well fitted by non accreting PMS models
 - same age must reproduce

evolution away from ZAMS at TURNOFF evolution toward ZAMS in PMS

- New PARSEC models with accretion were presented: will be soon available but after exploitation and calibration of main parameters
- Accretion models compared with Herbig Ae/Be stars:
 - current mass determination fairly independent from accretion
 - Ages ?
 - envisaged evolution scenarios not able to reproduce observed Hα data of fainter objects: possible explanations call for rejuvenation, cold accretion or both
- too many parameters: observations will likely have the last word