A Census of the Lowest Accretors

Thanawuth Thanathibodee University of Michigan

Nuria Calvet, James Muzerolle, Cesar Briceno, Jesus Hernandez, Ramiro Franco-Hernandez

June 19, 2019

Magnetospheric Accretion

Evolution

Accretion changes with time

• Accretion rate & frequency of accretors decrease with time

Accretor: a Star with DETECTABLE Accretion

Low Accretor: an Accretor with barely detectable accretion

It's all about contrast

- Chromospheric emission is important
- Accretion scales with mass "low accretor" category is mass-dependent
- Detectability depends on spectral type contrast between photosphere & shock

The Last Stages of Accretion

- Completing the details of magnetospheric accretion at low rate
- What causes accretion to stop?
 - Accretion occurs inside corotation radius. If the truncation radius shift outside corotation, accretion will stop.
 - (Photoevaporative/Stellar) winds can carry material away from the inner disk before they reach the star.
 - Planets take away mass that would have been accreted to the star.

Detection

He I 10830 is a superior accretion tracer

- Lower level is metastable, high gf value sensitive at low density
- Located in J band universal tracer
 - can be observed in all relevant SpT
 - Low extinction
- Redshifted Absorption = accretion

Properties

Characterizing Low Accretors

- Using Magnetospheric Accretion Model
 - Geometry of accretion
 - Mass accretion rate
 - Muzerolle+2001
- Accretion shock model
 - Constrain on mass accretion rate
 - Calvet & Gullbring 1998

Thanathibodee+2019

Low Accretor Prototype

CVSO 1335

- K5 low accretors in Orion OB1b
- Typical He I 10830 redshifted absorption
- Complex H-alpha line profile

Thanathibodee+2018

Multiple absorption

Decomposing Multiple Accretion Flows

Thanathibodee+2019

Low Accretors show clearer features

Absorption features appears more prominently at low accretion rate

Increasing statistics

Survey of Low Accretors

- Age: 1-15 Myr
- SpT: K0-M6
- WTTS with IR excess
- Observed with Magellan/FIRE
- Regions surveyed so far
 - Orion Cloud A & B
 - Orion OB 1 a/b
 - Chal
 - Upper Sco
 - Upper Cen-Lupus
 - Gamma Vel
- 118 targets

About 6% in a given population are WTTS with IR excess

Survey of Low Accretors

Four types of He I 10830 Profiles

Based on 118 observed WTTS with IR excess

For WTTS with IR excess, He I profile does not depend on spectral type (mass)

Survey of Low Accretors

For WTTS with IR excess, fraction of accretors does not depend on population age

Conclusions

- Details of accretion processes are best probed in low accretors
- Identifying accretors with He I 10830 provides more completeness to population studies.
- About 10-60% of WTTS w/IR excess are accreting.
- Fraction of "accreting WTTS" does not depend on mass/ age.