Searching for accretion among low-mass members in the Orion Nebula Cluster

Raquel.Albuquerque@astro.up.pt

STARRY Final Conference – 19 June 2019

PORTO

ACULDADE DE CIÊNCIAS

Collaborators: J. F. Gameiro (FCUP, IA)

- J. J. G. Lima (FCUP, IA)
- C. Sauty (Obs. Paris LUTh)
- S. H. P. Alencar (UFMG)
- C. Melo (ESO)

ONC → Orion Nebula Cluster (M42 / NGC 1976)

- One of the nearest and massive star forming clusters
- Radius ~ 3 pc
 Hillenbrand (1997); Hillenbrand+(2013)
- Age ~ 2.2 Myr
 Reggiani+(2011)
- Distance: 388 ± 5 pc
 Kounkel+(2017)

1. Introduction

Motivation: Is there on-going accretion among low-mass members of the ONC?

- Previously in Biazzo+(2009):
 - Characterized 91 low-mass ONC members (FLAMES/GIRAFFE);
 - None of them are accreting according to White & Basri (2003) accretion criterion;
 - Nevertheless, few stars show 10%-width larger than the median of the sample plus a slow rotation rate;
 - Stars show Li I (6708Å) in absorption and IR excess;

There is evidence that these stars should have on-going accretion!

1. Introduction

Motivation: Is there on-going accretion among low-mass members of the ONC?

• Previously in Biazzo+(2009):

- Characterized 91 low-mass ONC members (FLAMES/GIRAFFE);
- None of them are accreting according to White & Basri (2003) accretion criterion;
- Nevertheless, few stars show 10%-width larger than the median of the sample plus a slow rotation rate;
- Stars show Li I (6708Å) in absorption and IR excess;

2. Sample

Were observed 4 of the *possible accretors* from Biazzo+(2009) + JW847 between January and March 2015

- X-shooter spectrograph @ VLT
 Vernet+(2011)
- UVB + VIS + NIR 300-2500 nm
- Resolution UVB / VIS / NIR 4000 / 6700 / 3900
- Reduction with v2.7.1 X-shooter pipeline + IRAF Modigliani+(2010)

Figure made with Aladin Lite interactive sky maps (Bonnarel+2000; Boch & Fernique 2014)

These ONC members have been characterized in several large surveys

Table 1: Stellar parameters available in the literature for the ONC targets.

JW	2MASS	$d^{(1)}({ m pc})$	SpT ⁽²⁾	$RV^{(3)}$ (km s ⁻¹)	$v \sin i^{(4)} (\mathrm{km} \mathrm{s}^{-1})$
180	J05345819-0511536	323	M5	20.0 ± 1.4	44.1 ± 1.0
293	J05350682-0510385	386	M5	27.9 ± 1.7	46.8 ± 3.0
647	J05352029-0530395	412	M5e	26.4 ± 0.3	15.0 ± 0.7
847	J05352983-0532534	386	K3/G8	27.8 ± 0.2	44.5 ± 0.7
908	J05353534-0511114	395	M4.5	29.4 ± 0.6	16.3 ± 0.6

References:

(1) Gaia Collaboration+(2016,2018); Luri+(2018); (2) Hillenbrand(1997); (3) Cottaar+(2015); (4) Da Rio+(2016)

These ONC members have been characterized in several large surveys

Table 1: Stellar parameters available in the literature for the ONC targets.

JW	2MASS	$d^{(1)}({ m pc})$	SpT ⁽²⁾	$RV^{(3)}$ (km s ⁻¹)	$v \sin i^{(4)} (\mathrm{km} \mathrm{s}^{-1})$
180	J05345819-0511536	323	M5	20.0 ± 1.4	44.1 ± 1.0
293	J05350682-0510385	386	M5	27.9 ± 1.7	46.8 ± 3.0
647	J05352029-0530395	412	M5e	26.4 ± 0.3	15.0 ± 0.7
847	J05352983-0532534	386	K3/G8	27.8 ± 0.2	44.5 ± 0.7
908	J05353534-0511114	395	M4.5	29.4 ± 0.6	16.3 ± 0.6

References:

(1) Gaia Collaboration+(2016,2018); Luri+(2018); (2) Hillenbrand(1997); (3) Cottaar+(2015); (4) Da Rio+(2016)

Reclassified as a M0.5 Hillenbrand+(2013)

We used spectral indices to infer about SpT

- Spectral type
 - 1) Narrow-band spectral indices (ratios of average fluxes)
 - <u>M-type:</u> Riddick+(2007)
 - <u>K and early M-type:</u> Herczeg & Hillenbrand (2014)
 - K5 and later: Jeffries+(2007)
 - 2) Target spectra vs templates
- Effective temperature
 - **1)** <u>M-type:</u> Luhman+(2003)
 - 2) Earlier type: Kenyon & Hartmann (1995)

Average of spectral types

Non-accreting class III YSOs Manara+(2013,2017)

Temperature scales

Table 2: Spectral type and T_{eff} derived for the ONC targets.

JW	SpT lit	Sp	SpT derived in this work			$T_{\rm eff}({\rm K})$
	$H97^{(1)}$	RRL07 ⁽²⁾	$J07^{(3)}$	$HH14^{(4)}$	Adopted	
180	M5	M5.0	M5.1	M5.0	M5	3125
293	M5	M4.8	M4.8	M4.8	M4.5	3197
647	M5e	M3.2	M0.6	M2.1	M 1	3705
847	K3/G8		K6.6	K1.2	K6	4205
908	M4.5	M4.5	M4.5	M4.4	M4.5	3197

References:

(1) Hillenbrand (1997); (2) Riddick+(2007); (3) Jeffries+(2007); (4) Herczeg & Hillenbrand (2014)

Table 2: Spectral type and T_{eff} derived for the ONC targets.

JW	SpT lit	Sp	SpT derived in this work			$T_{\rm eff}({\rm K})$
	$H97^{(1)}$	RRL07 ⁽²⁾	$J07^{(3)}$	$HH14^{(4)}$	Adopted	
180	M5	M5.0	M5.1	M5.0	M5	3125
293	M5	M4.8	M4.8	M4.8	M4.5	3197
647	M5e	M3.2	M0.6	M2.1	M1	3705
847	K3/G8		K6.6	K1.2	K6	4205
908	M4.5	M4.5	M4.5	M4.4	M4.5	3197

References:

(1) Hillenbrand (1997); (2) Riddick+(2007); (3) Jeffries+(2007); (4) Herczeg & Hillenbrand (2014)

Gaia DR2 distances were used to derive L* and R*

- Luminosity
 - Stellar flux is integrated for the entire spectrum
 - Flux \rightarrow Luminosity: $L_* = 4\pi d^2 F_*$
- Stellar radius

$$R_* = \left(\frac{F_* d_*^2}{\sigma T_{\rm eff}^4}\right)^{1/2}$$

Table 3: Luminosity and stellar radius derived for the ONC targets.

JW	$\log L_*(L_{\odot})$	$R_*(R_\odot)$
180	-0.97	1.12
293	-0.89	1.17
647	-0.35	1.62
847	0.28	2.62
908	-0.86	1.21

We used the evolutionary tracks and isochrones of Siess+(2000) to plot the HR diagram

- This work
- ▲ JW647 after veiling correction $(r_{610nm} = 0.5)$
- Hillenbrand (1997) rescaled to Gaia DR2 distances

Table 4: Mass and age interpolated with Siess on-line tool for the ONC targets.

JW	$M_*(M_{\odot})$	Age (Myr)
180	0.17	3.53
293	0.21	3.14
647	0.47	1.96
847	0.90	1.03
908	0.21	2.99

JW647 shows the strongest Balmer Jump in the sample

- Balmer jump ~370 nm;
- BJ_{obs} = F(360 nm) / F(400 nm)
 Herczeg & Hillenbrand (2008)
- Accretor if BJ_{obs} > 0.5 for any mid-M-type dwarf

JW	SpT	BJ _{obs}
	(This work)	
180	M5	0.53
293	M4.5	0.46
647	M1	1.08
847	K 6	0.61
908	M4.5	0.50

Table 5: Observed Balmer jump measurements.

JW647 shows the strongest Balmer Jump in the sample

- Balmer jump ~370 nm;
- BJ_{obs} = F(360 nm) / F(400 nm)
 Herczeg & Hillenbrand (2008)
- Accretor if BJ_{obs} > 0.5 for any mid-M-type dwarf

JW	SpT	$BJ_{\rm obs}$
	(This work)	
180	M5	0.53
293	M4.5	0.46
647	M1	1.08
847	K6	0.61
908	M4.5	0.50

Table 5: Observed Balmer jump measurements.

JW647 shows the strongest Balmer Jump in the sample

- Balmer jump ~370 nm;
- BJ_{obs} = F(360 nm) / F(400 nm)
 Herczeg & Hillenbrand (2008)
- Accretor if BJ_{obs} > 0.5 for any mid-M-type dwarf

 Table 5: Observed Balmer jump measurements.

JW	SpT	BJ _{obs}
	(This work)	
180	M5	0.53
293	M4.5	0.46
647	M1	1.08
847	K 6	0.61
908	M4.5	0.50

Several Balmer lines show Inverse P Cygni (IPC) profiles for JW647

- H7 or Hε (397.0 nm) is partially blended with Ca II H (396.8 nm);
- The redshifted absorption extends until few hundreds of km/s;
- The IPC overlaps in all the Balmer lines presented.

JW647 should be accreting!

 f_{line}

$$f_{line} \rightarrow L_{line} \rightarrow \log(L_{acc}/L) = a \log(L_{line}/L) + b$$

Alcalá+ (2014)

$$f_{line} \to L_{line} \to L_{acc} \to \dot{M}_{acc} = \left(1 - \frac{R_*}{R_{in}}\right)^{-1} \frac{L_{acc}R_*}{GM_*} \approx 1.25 \frac{L_{acc}R_*}{GM_*}$$
$$\bigcup_{R_{in} = 5R_*}$$
Gullbring+ (1998)

 $\left\{ \log \dot{M}_{\rm acc} \left(M_{\odot} y r^{-1} \right) \right.$

- We found several accretion tracers for:
 - **JW180** (-10.1)
 - **JW293** (-10.0)
 - **JW647** (-8.5)
 - **JW908** (-9.8)
- **JW847** has only few accretion tracers in emission.

Line	λ (nm)
H10	379.8
H9	383.5
H8	388.9
Сан (К)	393.4
Сап (Н)	396.8
H7 (H ϵ)	397.0
Heı	402.6
H6 (H δ)	410.2
H5 (H γ)	434.0
Heı	447.1
H4 (Hβ)	486.1
Hei	587.6
Heı	667.8
Heı	706.5
Pa7 (Pa δ)	1004.9
Pa6 (Pa γ)	1093.8
Pa5 (Pa β)	1281.8
Br7 (Br γ)	2166.1

- We found several accretion tracers for:
 - **JW180** (-10.1)
 - JW293 (-10.0)
 JW647 (-8.5)
 - **JW908** (-9.8)

$$\log \dot{M}_{\rm acc} \left(M_{\odot} y r^{-1} \right)$$

• **JW847** has only few accretion tracers in emission.

λ (nm)
379.8
383.5
388.9
393.4
396.8
397.0
402.6
410.2
434.0
447.1
486.1
587.6
667.8
706.5
1004.9
1093.8
1281.8
2166.1

IR excess — Circumstellar disk

IR excess — Circumstellar disk

We suspect that we have transitional and pretransitional disks in our sample

 Pre-transitional disk: Has a gap that separates an inner dust ring from an outer one. Shows significant <u>NIR (1-5 µm)</u> and <u>MIR (5-20 µm)</u> excess.

Pre-Transitional Disk

15/17

We suspect that we have transitional and pretransitional disks in our sample

Pre-Transitional Disk

15/17

We suspect that we have transitional and pretransitional disks in our sample

- Pre-transitional disk: Has a gap that separates an inner dust ring from an outer one. Shows significant <u>NIR (1-5 µm)</u> and <u>MIR (5-20 µm)</u> excess.
- Transitional disk: Has an inner disk hole. Shows small NIR excess and strong MIR excess.

Transitional Disk

We suspect that we have transitional and pretransitional disks in our sample

Conclusions

- JW847 has no significant accretion tracers in emission;
- JW647 has clearly on-going accretion supported by:
 - IPC profiles among Balmer emission lines
 - Typical accretion rate for a CTTS: $\dot{M}_{\rm acc} = 10^{-8.5} M_{\odot}/yr^{-1}$
- JW180, JW293 and JW847: Small NIR + strong MIR excesses → transitional disks;
- JW647:

Significant NIR + MIR excesses → **pre-transitional disk**;

• **JW908** shows no NIR excess, but we do not have MIR photometry. Has accretion tracers in emission.

Thank you!

Questions?

This work was supported by FCT through national funds and by FEDER through COMPETE2020 by the grants: UID/FIS/04434/2019 and PTDC/FIS-AST/32113/2017 & POCI-01-0145-FEDER-028987. RMGA is supported by the fellowship PD/BD/113745/2015, under the FCT PD Program PhD::SPACE (PD/00040/2012), funded by FCT and POPH/FSE. We acknowledge financial support from of CNRS/INSU (France) and from CRUP through the PAUILF cooperation program (TC-16/17).

